The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4
Answer:
The acceleration of the snowball is 0.3125
Explanation:
The initial speed of the snowball up the hill, u = 0
The speed the snowball reaches, v = 5 m/s
The length of the hill, s = 40 m
The equation of motion of the snowball given the above parameters is therefore;
v² = u² + 2·a·s
Where;
a = The acceleration of the snowball
Plugging in the values, we have;
5² = 0² + 2 × a × 40
∴ 2 × 40 × a = 5² = 25
80 × a = 25
a = 25/80 = 5/16
a = The acceleration of the snowball = 5/16 m/s².
The acceleration of the snowball = 5/16 m/s² = 0.3125 m/s² .
Answer:
it's acceleration points tangentially to its trajectory in the direction of its motion at the top.
cause only it's horizontal velocity acts at the top. and it will be horizontal in the direction of it's motion.
In 1913, Niels Bohr proposed a theory for the hydrogen atom based on quantum theory that energy is transferred only in certain well defined quantities. Electrons should move around the nucleus but only in prescribed orbits. When jumping from one orbit to another with lower energy, a light quantum is emitted.
Answer:
9.74 x 10^7 m/s
Explanation:
V = 27000 V
energy of electrons = e x V
K = 1.6 x 10^-19 x 27000 = 43200 x 10^-19 J
Energy = 1/2 m v^2
43200 x 10^-19 = 0.5 x 9.1 x 10^-31 x v^2
v^2 = 9.495 x 10^15
v = 9.74 x 10^7 m/s