Answer:

Explanation:
To solve this problem, we can use the Combined Gas Laws:

Data:
p₁ = 2.02 atm; V₁ = 736 mL; n₁ = n₁; T₁ = 1 °C
p₂ = ?; V₂ = 416 mL; n₂ = n₁; T₂ = 82 °C
Calculations:
(a) Convert the temperatures to kelvins
T₁ = ( 1 + 273.15) K = 274.15 K
T₂ = (82 + 273.15) K = 355.15 K
(b) Calculate the new pressure

To find the mass of the water, you will first need to find the mass of a dry 100 mL beaker.-------51.377g
<span>Next, find the mass of the 100 mL beaker containing your water sample. ------------------------ 101.23g hope this helps :()</span>
Answer:
10.32 moles of ammonia NH₃
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 6.21×10²⁴ molecules
Number of mole of NH₃ =?
The number of mole of NH₃ can be obtained as follow:
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole
Therefore,
6.21×10²⁴ molecules = 6.21×10²⁴ / 6.02×10²³
6.21×10²⁴ molecules = 10.32 moles
Thus, 6.21×10²⁴ molecules contains 10.32 moles of ammonia NH₃
Acids or bases<span> with weak bonds easily dissociate into ions and are called "</span>strong<span>" acids or </span>bases<span>. Table 1: Summary List of </span>Characteristics<span> for </span>Strong<span> and Weak Acids and </span>Bases<span>. All </span>characteristics<span> of acids and </span>bases<span> are related to whether the predominate forms are molecules and ions. </span>Characteristic<span>.</span>