Answer: Bond Polarity | Chemistry for Non-Majors - Lumen Learning
Explanation:
Answer:
The correct answer is: 1.035 x 10⁻³ M
Explanation:
The dissociation equilibrium for acetic acid (CH₃COOH) is the following:
CH₃COOH(aq) ↔ CH₃COO⁻(aq) + H⁺(aq) Kc = 1.8 x 10⁻⁵
The expression for the equilibrium constant (Kc) is the ratio of concentrations of products over reactants. The products are acetate ion (CH₃COO⁻) and hydrogen ion (H⁺) while the reactant is acetic acid (CH₃COOH):
![Kc=\frac{[CH_{3} COO^{-} ][H^{+} ]}{[CH_{3} COOH]}= 1.8 x 10^{-5}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_%7B3%7D%20COO%5E%7B-%7D%20%5D%5BH%5E%7B%2B%7D%20%5D%7D%7B%5BCH_%7B3%7D%20COOH%5D%7D%3D%201.8%20x%2010%5E%7B-5%7D)
Given: [CH₃COOH]= 0.016 M and [CH₃COO⁻]= 0.92 M, we replace the concentrations in the equilibrium expression and we calculate [H⁺]:
![\frac{(0.016 M)[H^{+} ]}{(0.92M)}= 1.8 x 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%280.016%20M%29%5BH%5E%7B%2B%7D%20%5D%7D%7B%280.92M%29%7D%3D%201.8%20x%2010%5E%7B-5%7D)
⇒[H⁺]= (1.8 x 10⁻⁵)(0.92 M)/(0.016 M)= 1.035 x 10⁻³ M
For the equilibrium that exists in an aqueous solution<span> of nitrous acid (</span>HNO2, a weak acid) ... [H+][NO2. –]. [HNO2<span>]. PAGE: 14.1. 2. Which of the following is a conjugate ... Using the following Ka values, indicate the correct </span>order<span> of base strength. </span>HNO2<span>. Ka = </span>4.0<span> × 10–4 .... Calculate the [H+] in a </span>solution<span>that has a </span>pH<span> of 11.70.
i hope thid works
</span>
Answer:
a?
Explanation:cause if organism w is a fossil and organism y is a rock the rock is way older than a fossil so a
Answer: 300 K
Explanation:
Charles' Law: This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.
(At constant pressure and number of moles)

Given : V= 6.0 L
k= 0.020 L/K
T=?


Thus temperature of the gas is 300 K.