Answer:
THEY ALL INVOLVE FIGHTING PATHOGENS
Explanation:
The immune system which is involved in defending the body against infections are diseases involves three lines of defense which are all involved in fighting against pathogens. Pathogens are invaders which when introduced into the body causes harm and therefore makes us sick. The body's first line of defense includes the physical barriers such as the skin, mucous membrane; chemical barriers such as tears, saliva, gastric acid in the stomach. These helps to keep the pathogens from entering the delicate parts of the body and once the pathogens find their way out of the reach of the first line of defense, the second line of defense is initiated. This includes inflammatory effects, swelling, redness, phagocytosis by neutrophils and macrophages. The third line of defense is the actions of lymphocytes which acts on invading microbes. The lymphocytes are of two types; the B and T cells. B cells produces antibodies which fight the antigens and T cells attack the infected cells of the body. There is also the memory cells which keeps information about the invading microbes for future attacks. This enables the body to respond swiftly when next the same type of pathogens attack.
Let us calculate the structure of the electric shells of the Al atom. It has an atomic number of 13, so it has 13 electrons. The first 2 go to the first hell. The next 8 need to go to the second shell and the last 3 ones would go to the outermost shell. The outer shell, that is the most important one for chemical reactions, has thus 3 electrons. An atom always tries to have a completed outer shell (with either 2 or 8 atoms). It is easier for a cell to have a charge of +3 than a charge of -5 (smaller absolute value) and thus the Aluminum atom will try to get rid of the 3 electrons. In this process, it loses negative charge thus it will become positively charged. Hence, the correct answer is that it will prefer to lose 3 electrons and become positively charged.
Selenium falls in the same column with oxygen therefore it has the same number of valence electrons with oxygen which is 6. It fills the 3d orbital but only 4s and 4p are counted. The electronic configuration is [Ar]3d^10 4s^2.
In a mechanical cycle, mechanical energy (mostly the the rotation) is used to get the desired result. The form of energy remains the same.
<span>In a thermodynamic cycle heat is converted to mechanical energy. That is to say there is conversion of energy.</span>
Answer: In the reaction rate law the rate is expressed in terms of concentrations of species. It is important to know how much time a reaction will take to complete itself. It depends on some factors. Temperature, concentration of component, catalyst and pressure. On increasing these factors the rate of reaction of a respective reaction increases. It doesn't depends upon reactor type.