<span>In logic, the converse of a conditional statement is the result of reversing its two parts. For example, the statement P → Q, has the converse of Q → P.
For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the converse is 'if a figure is a parallelogram, then it is rectangle.'
As can be seen, the converse statement is not true, hence the truth value of the converse statement is false.
</span>
The inverse of a conditional statement is the result of negating both the hypothesis and conclusion of the conditional statement. For example, the inverse of P <span>→ Q is ~P </span><span>→ ~Q.
</span><span><span>For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the inverse is 'if a figure is not a rectangle, then it is not a parallelogram.'
As can be seen, the inverse statement is not true, hence the truth value of the inverse statement is false.</span>
</span>
The contrapositive of a conditional statement is switching the hypothesis and conclusion of the conditional statement and negating both. For example, the contrapositive of <span>P → Q is ~Q → ~P. </span>
<span><span>For the given statement, 'If a figure is a rectangle, then
it is a parallelogram.' the contrapositive is 'if a figure is not a parallelogram,
then it is not a rectangle.'
As can be seen, the contrapositive statement is true, hence the truth value of the contrapositive statement is true.</span> </span>
Answer:
OOF I MEANT A
Step-by-step explanation:
Michelle is in less debt than John
Answer:
base=area=1/2b×h
Step-by-step explanation:
it's a pleasure to help you goodbye. if I'm wrong tell me right away.
You have to ask yourself how would you read that decimal? It is 162 ten-thousandths because the last digit, which is 2 is in the ten-thousandths place. So the fraction would be 162/10000
The statement that is most likely true is that the median is in the 6-10 interval and the mean is in the 6-10
There were a total of 30 different pieces of data collected, so the 15th and 16th pieces of data that would create the median. Both the 15th and 16th numbers would be in the 6 - 10.
If you find the average of the middle data point in each interval the mean would be approximately 7.2. This is in the 2nd interval (6-10).