1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
14

The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick

together and continue on with velocity vf. Which of these statements is true?
a. vf= v2
b. vf is less than v2.
c. vf is greator than v2, but less than v1.
d. vf= v1
Physics
1 answer:
Travka [436]3 years ago
4 0

Answer:

c. vf is greator than v2, but less than v1

Explanation:

The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.

In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.  

Collisions in which the kinetic energy is conserved are called elastic collision.

Collisions in which the kinetic energy is not conserved are called inelastic collisions.  If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.

<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>

Therefore,

a. vf = v2 is wrong because vf is greater than v2

b. vf is less than v2 is wrong because vf is greater than v2

c. vf is greater than v2, but less than v1 is correct.

d. vf = v1 is wrong because vf is less than v1

You might be interested in
A watering can is most likely measured in which metric unit
Iteru [2.4K]
A watering can is used to hold a water that we will use to water the plants. The water has both mass and volume. Two watering cans are most often different by the volume they contain. 

Many various units for volume are used but most often used unit is liter. In a metric system basic units are those such as meter, kilogram and liter while in imperial system units used are those such as foote, inch, pound and gallon.

Unit for volume in metric system is cubic meter. It is equal to a volume of a cube whose all sides measure 1m. This is equal to 1000L. For watering cans that contain several liters units used is decimeter cubed. 1dm^3 = 1L
3 0
3 years ago
B. Assuming the acceleration is still -9.81 m/s2, what is the instantaneous velocity of the
goblinko [34]

We have that the instantaneous velocity of the shuttlecock when it hits the ground is

V_{int}=\sqrt{U^2+19.6H}

From the question we are told

Assuming the acceleration is still -9.81 m/s2, what is the instantaneous velocity of the

shuttlecock when it hits the ground? Show your work below.

Generally the equation for acceleration  is mathematically given as

a=v \frac{dv}{dx}\\\\\Therefore\\\\\2ah=v^2-u^2

Where

acceleration is still -9.81 m/s2,

Hence,

V^2-U^2=2(-9.81)*-H

Therefore

V_{int}=\sqrt{U^2+19.6H}

For more information on this visit

brainly.com/question/12319416?referrer=searchResults

7 0
2 years ago
To view an enlarged upright image of an object through a simple magnifier, where must the object be located?.
Andre45 [30]

Answer:within the focal length of the lens, provided the focal length is shorter than the near point distance.

Explanation:Hope it helps

6 0
3 years ago
Energy is conserved. This means that in any system, _________. a) energy is constantly recycled b) total energy input equals tot
tangare [24]

Answer:

b) total energy input equals total energy output

Explanation:

The first law of thermodynamics is a generalization of the conservation of energy in thermal processes. It is based on Joule's conclusion that heat and energy are equivalent. But to get there you have to get around some traps along the way.

From Joule's conclusion we might be tempted to call heat "internal" energy associated with temperature. We could then add heat to the potential and kinetic energies of a system, and call this sum the total energy, which is what it would conserve. In fact, this solution works well for a wide variety of phenomena, including Joule's experiments. Problems arise with the idea of ​​heat "content" of a system. For example, when a solid is heated to its melting point, an additional "heat input" causes the melting but without increasing the temperature. With this simple experiment we see that simply considering the thermal energy measured only by a temperature increase as part of the total energy of a system will not give a complete general law.

Instead of "heat," we can use the concept of internal energy, that is, an energy in the system that can take forms not directly related to temperature. We can then use the word "heat" to refer only to a transfer of energy between a system and its environment. Similarly, the term work will not be used to describe something contained in the system, but describes a transfer of energy from one system to another. Heat and work are, therefore, two ways in which energy is transferred, not energies.

In an isolated system, that is, a system that does not exchange matter or energy with its surroundings, the total energy must remain constant. If the system exchanges energy with its environment but not matter (what is called a closed system), it can do so only in two ways: a transfer of energy either in the form of work done on or by the system, either in the form of heat to or from the system. In the event that there is energy transfer, the change in the energy of the system must be equal to the net energy gained or lost by the environment.

6 0
3 years ago
Dan was running and he tripped and hurt his knee. the pain signals were carried to his brain by the?
andrey2020 [161]
The pain was triggered by the Nervous System
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is one way to lower electrical resistance? A. Use an insulator. B. Use a longer wire. C. Use a thinner wire. D. Use a thick
    9·2 answers
  • A rock of mass 170 kg needs to be lifted off the ground. One end of a metal bar is slipped under the rock, and a fulcrum is set
    5·1 answer
  • What is the primary mechanical advantage of a screw?
    14·2 answers
  • A small insect viewed through a convex lens is 1.5 cmcm from the lens and appears 2.5 times larger than its actual size. Part A
    11·1 answer
  • Apply the impulse-momentum relation and the work-energy theorem to calculate the maximum value of t if the cake is not to end up
    10·1 answer
  • A particle initially located at the origin has an acceleration of = 2.00ĵ m/s2 and an initial velocity of i = 8.00î m/s. Find (a
    7·1 answer
  • A 2020 kg car traveling at 14.2 m/s collides with a 2940 kg car that is initally at rest at a stoplight. The cars stick together
    7·1 answer
  • Much of the pollution in out oceans comes from:
    12·1 answer
  • 1. A sample of gas has a constant temperature and number of particles. As the volume of the gas sample is increased, the pressur
    8·1 answer
  • A block of wood has density 0.500 g/cm3 and mass 2 000 g. It floats in a container of oil (the oil's density is 0.750 g/cm3). Wh
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!