Answer:
decrease the area in the second cylinder
Explanation:
In a two-cylinders pneumatic system, the pressure exerted on the first cylinder is equal to the pressure on the second cylinder:

We can rewrite the pressure as product between force (F) and area (A) of the cylinder:

In this system, the output force should be 4 times the input force:

Substituting into the previous equation, we get:

This means that the area of the second cylinder must be 1/4 of the area of the first cylinder, so the correct answer is
decrease the area in the second cylinder
Answer:
1.55 m
Explanation:
The potential produced by a point charge, is inversely proportional to the distance from the charge to the point where the potential is being calculated, as follows:

As it only depends from the distance r, we can conclude that if the potential is the same for any point to a distance r from the point charge, the equipotencial surface must be a sphere of radius r.
Replacing q = +1.7*10⁻⁸ C, and k = 9*10⁹ N*m²/C², and V, by 120 V and 54 V, we can find the distance from the charge, to the points where we are calculating the potential V, as follows:


The distance between both points, is just the difference between the radius of both spheres, as follows:
r₂ - r₁ = 1.55 m
Answer:
According to Archimedes principle the upthrust on the body is equal to the weight of the water displaced by the body. ... Here, the mass would be the net difference in the weight of the object.
Answer:
length of selfie-stick is 1.62 m
Explanation:
Given data
image size h1 = 5 mm = 5 ×
m
focal length = 4 mm = 4 ×
m
distance h2 = 2.032 m
to find out
How long of a selfie-stick
solution
here we find first magnification
that is M = h1 /h2
M = 5 ×
/ 2.032
M = 2.46 ×
and we know M = p/q
so p = Mq = 2.46 ×
q
so we apply lens formula
1/f = 1/p - 1/q
1/ 4 ×
= 1 / 2.46 ×
q - 1/q
q = 1.622 m
so length of selfie-stick is 1.62 m
Hi there!
We can begin by calculating the voltage drop across the 30 Ω resistor using the equation:
V = IR
V = Potential Difference (V)
I = Current (A)
R = Resistance (Ω)
Calculate the voltage. Recall that the current is CONSTANT across a series circuit.
V = 0.12 × 30 = 3.6 V
Voltage ADDS UP in a series, so:
Total V = V1 + V2
6 = 3.6 + V2
<u>V2 = 2.4V. The correct answer is A.</u>