1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
6

The second-order decomposition of hi has a rate constant of 1.80 x 10−3 m−1 s−1. How much hi remains after 45.6 s if the initial

concentration of hi is 3.81 m?
Physics
1 answer:
zlopas [31]3 years ago
6 0

Answer:

2.9 M

Explanation:

The concentration-time equation for a second order reaction is:

1/[A] = kt + 1/[A°]

Where,

A = concentration remaining at time, t

A° = initial concentration

k = rate constant

1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81

1/[A] = 0.345

= 1/0.345

= 2.9 M.

You might be interested in
Dark clothing feels warmer than white clothing on a sunny day. Which interaction causes the dark clothing to feel warm?
yulyashka [42]

Explanation:

The darker the object, the better it emits heat, because it's a better absorber of light. On the other hand, a white object appears white because it reflects all the different wavelengths and absorbs little to no light.

8 0
3 years ago
Read 2 more answers
. (a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110
7nadin3 [17]

Answer:

(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m

(b) thermal energy was generated by friction is 1.88 x 10^{5} J

(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N

Explanation:

given information:

m = 750 kg

initial velocity, v_{0} = 110 km/h = 110 x 1000/3600 = 30.6 m/s\frac{30.6^{2} }{2x9.8}

initial height, h_{0} = 22 m

slope, θ = 2.5°

(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?

according to conservation-energy

EP = EK

mgh = \frac{1}{2} mv_{0} ^{2}

gh = \frac{1}{2} v_{0} ^{2}

h = \frac{v_{0} ^{2} }{2g}

  = 47.6 m

(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?

thermal energy = mgΔh

                         = mg (h - h_{0})

                         = 750 x 9.8 x (47.6 - 22)

                         = 188160 Joule

                         = 1.88 x 10^{5} J

(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?

f d  = mgΔh

f = mgΔh / d,

where h = d sin θ, d = h/sinθ

therefore

f = (mgΔh) / (h/sinθ)

 = 1.88 x 10^{5}/(22/sin 2.5°)

 = 373 N

8 0
3 years ago
the loss of a partical such as a proton as an atom tries to become stable is called A.) an isotope B.) Radioactive decay C.) Rad
Arte-miy333 [17]
The answer would be B
4 0
3 years ago
Read 2 more answers
A heat pump has a coefficient of performance that is 60% of the Carnot heat pump coefficient of performance. The heat pump is us
Nataliya [291]

Answer:

T_C=118.8 K= 154.2°C

Explanation:

COP_max of carnot heat pump= \frac{T_{H} }{T_{H}-T_{C} }

where T_H and T_C are temperatures of hot and cold reservoirs

Also COP=\frac{Q_H}{W}

in the question COP= \frac{60}{100} \times COP_{max}

⇒\frac{Q_H}{W} =\frac{60}{100}\times\frac{T_H}{T_H-T_C}

heat is added directly to be as efficient as via heat pump

Q_H= W

and T_H= 24° C= 297 K

1=\frac{60}{100}\times \frac{297}{297-T_C}

on calculating the above equation we get

T_C=118.8 K

the outdoor temperature for efficient addition of heat to interior of home

T_C=118.8 K= 154.2°C

6 0
3 years ago
Two metra trains approach each other on separate but parallel tracks. one has a speed of 90 km/hr, the other 80 km/hr. initially
Gennadij [26K]

The trains take <u>57.4 s</u> to pass each other.

Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.

therefore,

v_A=90 km/h\\ v_B=-80 km/h

The relative velocity of the train A with respect to B is given by,

v_A_B=v_A-v_B\\ =(90km/h)-(-80km/h)\\ =170km/h

If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.

The trains are a distance d = 2.71 km apart.

Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,

t= \frac{d}{v_A_B}

Substitute 2.71 km for d and 170 km/h for v_A_B

t= \frac{d}{v_A_B}\\ =\frac{2.71 km}{170 km/h} \\ =0.01594 h

Express the time in seconds.

t=(0.01594h)(3600s/h)=57.39s

Thus, the trains cross each other in <u>57.4 s</u>.

6 0
3 years ago
Other questions:
  • A scientist is subjected to a dose of ionizing radiation in his laboratory. without the help of radiation detection instruments,
    9·1 answer
  • You have a frustrating day and just feel like screaming; you grab a pillow to scream into. Which interaction of sound would take
    5·1 answer
  • A projectile is launched in the horizontal direction. It travels 2.050 m horizontally while it falls 0.450 m vertically, and it
    9·1 answer
  • The two long straight wires are separated by a distance of d = 0.40 m. The currents are to the right in the upper wire and to th
    6·1 answer
  • The chemical reaction involved in burning wood is that endothermic or Exothermic?
    13·1 answer
  • A -5.40nC point charge is on the x axis at x = 1.25m . A second point charge Q is on the x axis at -0.625m.
    15·1 answer
  • Which of the following statements is true about the potential energy found in fossil fuels?
    14·1 answer
  • The reason a penny thrown straight up inside a bus will come back to your hand is that you, the bus, the air inside the bus, and
    8·1 answer
  • You need to move a 132 kg sofa to a different location in the room. It takes a force
    5·1 answer
  • 6. The temperature at which water molecules have the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!