Answer:
The capacitance per unit length is 
(b) is correct option.
Explanation:
Given that,
Radius a= 2.50 mm
Radius b=7.50 mm
Dielectric constant = 3.68
Potential difference = 120 V
We need to calculate charge per length for the capacitance
Using formula of charge per length

Put the value into the formula


We know that,

We need to calculate the capacitance per unit length
Using formula of capacitance per unit length



Hence, The capacitance per unit length is 
Answer:
When the termination is a terminal block, care must be taken to ensure a good electrical connection without damaging the conductor. Terminals should not be used for more than one
Explanation:
The Terminal block being a modular block, having insulated frame, which can secure more than two wires in it. It has a conducting strip in it. These terminal clocks helps in making the connection safer as well as organised. These terminal blocks are used for power distribution in safer way. Its potential is it can distribute power from single to multiple output. The conductor is used for making it proper contact.
Answer:
54 km/hr
Explanation:
m/s to km/hr => 18/5
15 m/s to km/hr => 15 x 18/5 =>3 x 18 => 54km/hr
Electrostatic forces are non-contact forces; they pull or push on objects without touching them
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation:
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:

Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!