1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
6

The second-order decomposition of hi has a rate constant of 1.80 x 10−3 m−1 s−1. How much hi remains after 45.6 s if the initial

concentration of hi is 3.81 m?
Physics
1 answer:
zlopas [31]3 years ago
6 0

Answer:

2.9 M

Explanation:

The concentration-time equation for a second order reaction is:

1/[A] = kt + 1/[A°]

Where,

A = concentration remaining at time, t

A° = initial concentration

k = rate constant

1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81

1/[A] = 0.345

= 1/0.345

= 2.9 M.

You might be interested in
Which would require the greater energy; slowing down of the orbital speed of the Earth so it crashes into the sun, or speeding u
tresset_1 [31]

Answer: Speeding up the orbital speed of earth so it escapes the sun require the greater energy.

Explanation: To find the answer, we need to know more about the Orbital and escape velocities.

<h3>What is Orbital and Escape velocity?</h3>
  • Orbital velocity can be defined as the minimum velocity required to put the satellite in its orbit around the earth.
  • The expression for orbital velocity near to the surface of earth will be,

                   V_o=\sqrt{gR}

  • Escape velocity can be defined as the minimum velocity with which a body must be projected from the surface of earth, so that it escapes from the gravitational field of earth.
  • The expression for orbital velocity will be,

                    V_e=\sqrt{2gR}

  • If we want to get into the sun, we want to slow down almost completely, so that your speed relative to the sun became almost zero.
  • We need about twice the raw speed to go to the sun than to leave the sun.

Thus, we can conclude that, the speeding up the orbital speed of earth so it escapes the sun require the greater energy.

Learn more about orbital and escape velocity here:

brainly.com/question/28045208

#SPJ4

3 0
2 years ago
A cup of coffee sits on the dashboard of an automobile. Even though you hold the cup still, as the car goes around a sharp curve
jasenka [17]
This would be Newton’s first law :)
3 0
3 years ago
Read 2 more answers
A builder drops a brick from a height of 15 m above the ground. The gravitational field strength g is 10 N/ kg. What is the spee
Basile [38]

The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.

Given the data in the question;

Since the brick was initially at rest before it was dropped,

  • Initial Velocity; u = 0
  • Height from which it has dropped; h = 15m
  • Gravitational field strength; g = 10N/kg = 10 \frac{kg.m/s^2}{kg} = 10m/s^2

Final speed of brick as it hits the ground; v =  \ ?

<h3>Velocity</h3>

velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

v^2 = u^2 + 2gh

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.

To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

v^2 = u^2 + 2gh\\\\v^2 = 0 + ( 2\ *\ 10m/s^2\ *\ 15m)\\\\v^2 = 300m^2/s^2\\\\v = \sqrt{300m^2/s^2}\\ \\v = 17.32m/s

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.

Learn more about equations of motion: brainly.com/question/18486505

8 0
2 years ago
What is the value of acceleration due to gravity, g, on Earth?
qwelly [4]

Explanation:

It varies with altitude, but at sea level, it's 9.8 m/s².

8 0
3 years ago
A 2kg hockey puck is sliding across the ice skating rink at 2 m/s. A player hits the puck so it's velocity increases to 10 m/s.
konstantin123 [22]

The work done on the puck is 96 J

Explanation:

According to the work-energy theorem, the work done on the hockey puck is equal to the change in kinetic energy of the puck.

Mathematically:

W=K_f -K_i= \frac{1}{2}mv^2-\frac{1}{2}mu^2

where

K_f = \frac{1}{2}mv^2 is the final kinetic energy of the puck, with

m = 2 kg being the mass of the puck

v = 10 m/s is the final speed

K_i = \frac{1}{2}mu^2 is the initial kinetic energy of the puck, with

u = 2 m/s being the initial speed of the puck

Substituting numbers into the equation, we find the work done by the player on the puck:

W=\frac{1}{2}(2)(10)^2 - \frac{1}{2}(2)(2)^2=96 J

Learn more about work and kinetic energy:

brainly.com/question/6763771  

brainly.com/question/6443626  

brainly.com/question/6536722

#LearnwithBrainly

6 0
2 years ago
Other questions:
  • How many mL of water would be displaced by 408 g of lead
    13·1 answer
  • if you divide a force measured in newtons by a speed measured in in meters per second in what units will the answer be expressed
    11·1 answer
  • A 42.0-cm diameter disk rotates with a constant angular acceleration of 2.70 rad/s2. It starts from rest at t = 0, and a line dr
    15·1 answer
  • While discussing the effects of loose wheel bearings: Technician A says that vibration may occur while driving. Technician B say
    12·1 answer
  • 1. List one way mitosis and meiosis are the same and one way they are different.
    10·1 answer
  • Each step in any energy conversion process will _____.
    9·1 answer
  • Eardrum vibrations are transmitted to the cochlea by a piston consisting of
    8·1 answer
  • The amount of kinetic energy a moving object has depand on its
    13·2 answers
  • TRUE OR FALSE
    6·2 answers
  • On which planet would you weigh less?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!