Answer:
1.82 L
Explanation:
We are given the following information;
- Initial volume as 2.0 L
- Initial temperature as 60.0°C
- New volume as 30.0 °C
We are required to determine the new volume;
From Charles's law;

Where,
are initial and new volume respectively, while
are initial and new temperatures respectively;



Rearranging the formula;


Therefore, the new volume that would be occupied by the gas is 1.82 L
Answer:
3= Lithium (Li) = [He] 2s1
6= Carbon (C) = [He] 2s2 2p2
8=Oxygen (O)= [He] 2s2 2p4
13=Aluminium (Al)= [Ne] 3s2 3p1
U 2 can help me by marking as brainliest.........
Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
The Actual Yield is given in the question as 21.2 g of NaCl. However, in order to find the theoretical yield, you have to write a balanced equation and use the mole ratio to calculate the mass of NaCl that would be produced.
Balanced Equation: CuCl + NaNO₃ → NaCl + CuNO₃
Moles of CuCl = Mass of CuCl ÷ Molar Mass of CuCl
= 31.0 g ÷ (63.5 + 35.5)g/mol
= 0.31 mol
the mole ratio of CuCl to NaCl is 1 : 1,
∴ if moles of CuCl = 0.31 mol,
then moles of NaCl = 0.31 mol
Now, Mass of NaCl = Moles of NaCl × Molar Mass of NaCl
= 0.31 mol × (23 + 35.5) g/mol
= 18.32 g
⇒ the THEORETICAL Yield of NaCl, in this case, is 18.32 g.
Now, since Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
⇒ Percentage Yield of NaCl = (21.2g ÷ 18.32g) × 100
= 115.7 %
NOTE: Typically, the percentage yield of a reaction is less than 100%, however in a case where the mass of the substance is weighed with impurities, then that mass may be in excess of 100% as seen here.
The balanced equation would be 
<h3>Electrochemical equations</h3>
Zn reacts with Cu solution according to the following equation:

In the reaction,
is reduced according to the following: 
While Zn is oxidized according to the following: 
Thus, giving the overall equation of; 
More oxidation-reduction equations can be found here: brainly.com/question/13699873
#SPJ1