Answer: 
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,:


where,
= initial pressure of gas = 101.3 kPa
= final pressure of gas = 94.6 kPa
= initial volume of gas = 20.0 ml
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get the final volume of gas.


Thus the correct numerical setup for calculating the new volume is 
Answer:
V₂ = 3227.46 L
Explanation:
Given data:
Initial volume of gas = 1000 L
Initial temperature = 50°C (50 +273 = 323 K)
Initial pressure = 101.3 KPa
Final pressure = 27.5 KPa
Final temperature = 10°C (10 +273 = 283 K)
Final volume = ?
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 101.3 KPa × 1000 L × 283 K / 323 K × 27.5 KPa
V₂ = 28667900 KPa .L. K /
8882.5 K.KPa
V₂ = 3227.46 L
Answer:
-195.8º < -191.5º < 100º
Explanation:
Water, or H20, starts boiling at 100ºC.
Nitrogen, or N2, starts boiling at -195.8ºC.
Carbon monoxide, or C0, starts boiling at -191.5ºC.
When we place these in order from decreasing boiling point:
-195.8º goes first, then -191.5º, and 100º goes last.
Answer:
A. Energy is transferred to different forms
.
Explanation:
Hello!
In this case, we need to consider the law of conservation of mass and energy which states that mass and energy cannot be neither created nor destroyed, just modified; it means we can rule out B. and C. so far.
Moreover, since D. is actually true for combustion reactions because they are used to provide energy in industrial operations, this is not the concern here because a combustion reaction is not considered.
Therefore the correct option is A. Energy is transferred to different forms as the energy provided by Rose is transferred to the pendulum system
.
Best regards!