1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
14

Rita throws a ball straight up into the air and catches it at the

Physics
2 answers:
Kaylis [27]3 years ago
6 0

(1) The potential energy at the top of the ball’s motion is 18 J.

(3) The kinetic energy increases as the potential energy decreases.

(4) The kinetic energy decreases as the potential energy increases.

(5) The total mechanical energy of the ball stays constant.

Explanation:

The total mechanical energy of the ball is equal to the sum of its kinetic energy (K, energy due to the motion) and its potential energy (U, energy due to the height of the ball). Mathematically:

E=K+U

In absence of friction, the mechanical energy of the ball is conserved, so in this case, it is always equal to 18 J. Let's now use this information to analyze each of the given statements:

(1) The potential energy at the top of the ball’s motion is 18 J.  --> TRUE. In fact, at the top, the ball's speed becomes zero, so its kinetic energy is zero: K = 0. This means that all the mechanical energy of the ball is potential energy, therefore

E = U = 18 J

(2) The kinetic energy is less when the ball is thrown than when it is caught.   --> FALSE. As we said, in absence of friction, the mechanical energy is conserved, therefore it always remains equal to 18 J.

(3) The kinetic energy increases as the potential energy decreases.  --> TRUE. As we said, the sum of potential+kinetic energy remains constant:

E = K + U = 18 J

therefore, when the potential energy decreases, the kinetic energy increases.

(4)The kinetic energy decreases as the potential energy increases.  --> TRUE. For the same reason described in (3).

(5)The total mechanical energy of the ball stays constant.  --> TRUE. As we said at the beginning, the total mechanical energy is constant.

(6) The mechanical energy decreases as the ball moves up and increases as the ball comes down. --> FALSE. As we said, the mechanical energy remains constant, so it cannot change.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

vfiekz [6]3 years ago
4 0

Answer:

1, 3, 4, 5

Explanation:

if this helps just leave a thanks an friend me if it did.  

You might be interested in
a small table has a mass of 4kg, stands on four legs, each leg having an area of 0.001 m2. what is the pressure exerted by the t
Gemiola [76]

Answer:

P = 10 kPa

Explanation:

Given that,

The mass of a small table, m = 4 kg

The area of each leg = 0.001 m²

We need to find the pressure exerted by the table on the floor. Pressure is equal to the force per unit area. So

P=\dfrac{mg}{4\times A}\\\\P=\dfrac{4\times 10}{4\times 0.001}\\P=10000\ Pa\\\\or\\\\P=10\ kPa

So, the required pressure is 10 kPa.

3 0
3 years ago
In what part of the plant is glucose suger made?​
Eduardwww [97]

\large  \mid   \underline {\bf {{{\color{navy}{Leaf  \:  \:  \: Chloroplast \: ...}}}}} \mid

<h2>☛ More Information :</h2>

  • Green plants manufacture glucose through a process that requires light, known as photosynthesis.

  • Glucose is stored in the form of starch in plants.
5 0
3 years ago
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
3 years ago
A rock is projected upward from the surface of the moon, at time t = 0.0 s, w a velocity of 30 m/s. The acceleration due to grav
Vinvika [58]
<h2>Answer: 277.777 m</h2>

Explanation:

The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.

In this sense, the movement equations in the Y axis are:

y-y_{o}=V_{o}.t+\frac{1}{2}g.t^{2}    (1)

V=V_{o}-g.t    (2)

Where:

y  is the rock's final position

y_{o}=0  is the rock's initial position

V_{o}=30\frac{m}{s} is the rock's initial velocity

V is the final velocity

t is the time the parabolic movement lasts

g=1.62\frac{m}{s^{2}}  is the acceleration due to gravity at the surface of the moon

As we know y_{o}=0 , equation (2) is rewritten as:

y=V_{o}.t+\frac{1}{2}g.t^{2}    (3)

On the other hand, the maximum height  is accomplished when V=0:

V=V_{o}-g.t=0    (4)

V_{o}-g.t=0    

V_{o}=g.t    (5)

Finding t:

t=\frac{V_{o}}{g}    (6)

Substituting (6) in (3):

y=V_{o}(\frac{V_{o}}{g})+\frac{1}{2}g(\frac{V_{o}}{g})^{2}    (7)

y_{max}=\frac{{V_{o}}^{2}}{2g}    (8)  Now we can calculate the maximum height of the rock

y_{max}=\frac{{(30m/s)}^{2}}{(2)(1.62m/s^{2})}   (9)

Finally:

y_{max}=277.777m  

4 0
3 years ago
Student 1 lifts a box with a force of 500 N and sets it on a tabletop 1.2 m high. Student 2 pushes an identical box up a 5 m ram
Troyanec [42]

The student who did the most work is student 2 with 2500 Joules.

<u>Given the following data:</u>

  • Force 1 = 500 Newton
  • Distance 1 = 1.2 meter
  • Force 2 = 500 Newton
  • Distance 2 = 5 meter

To determine which of the students did the most work:

Mathematically, the work done by an object is given by the formula;

Work\;done = Force \times distance

<u>For </u><u>student 1</u><u>:</u>

Work\;done = 500 \times 1.2

Work done = 600 Joules

<u>For </u><u>student 2</u><u>:</u>

Work\;done = 500 \times 5

Work done = 2500 Joules.

Therefore, the student who did the most work is student 2 with 2500 Joules.

Read more: Read more: brainly.com/question/13818347

7 0
3 years ago
Read 2 more answers
Other questions:
  • If your doctor told you that you have strep throat, you could conclude that you are infected with which type of pathogen? A. bac
    5·2 answers
  • Which is one way that scientists communicate the results of an experiment?
    15·2 answers
  • List 3 indicators that a chemical reaction has occurred.
    8·1 answer
  • A trapeze artist swings in simple harmonic motion with a period of 3.8 s.
    11·1 answer
  • Is a pair of sneakers a want or a need? Is the most expensive pair of sneakers a want or a need?
    5·1 answer
  • The air also contains oxygen nitrogen and carbon dioxide what is the state of each of substance at -190°?
    11·2 answers
  • A 0.144 kg baseball approaches a batter with a speed of . The batter lines the ball directly back to the pitcher with a speed of
    7·1 answer
  • Can aurora be found in other planets?
    5·2 answers
  • 25.Figure 22.22 shows a plot
    15·1 answer
  • 3. Which forces would exist in a free body diagram of this car accelerating along the highway?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!