Vi=0m/s
Vf=?
A=9.81
D=44
T=not needed
Vf^2=Vi^2+2ad
Vf=2ad square rooted
Vf=2(9.81)(44) square root it
Vf=29.3m/s
Answer:
a) a = 4.9 m / s², N = 16.97 N and b) F = 9.8 N
Explanation:
a) For this exercise we will use Newton's second law, we write a reference system with the x axis parallel to the plane, see attached, in this system the only force we have to break down is weight, let's use trigonometry
sin 30 = Wx / W
cos 30 = Wy / W
Wx = W sin30
Wy = W cos 30
Let's write the equations on each axis
X axis
Wx = ma
Y Axis
N- Wy = 0
N = Wy = mg cos 30
N = 2.0 9.8 cos 30
N = 16.97 N
We calculate the acceleration
a = Wx / m
a = mg sin 30 / m
a = g sin 30
a =9.8 sin 30
a = 4.9 m / s²
b) For the block to move with constant speed, the acceleration must be zero, so the force applied must be equal to the weight component
F -Wx = 0
F = Wx
F = m g sin 30
F = 2.0 9.8 sin 30
F = 9.8 N
<h2>Answer:</h2>
The refractive index is 1.66
<h2>Explanation:</h2>
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum
.
Refractive index of medium = speed of light in vacuum / speed of light in medium
So
RI = 1/0.6 = 5/3 or 1.66
Answer:
The mass rate of the cooling water required is: 
Explanation:
First, write the energy balance for the condensator: The energy that enters to the equipment is the same that goes out from it; consider that there is no heat transfer to the surroundings and kinetic and potential energy changes are despreciable.

Where w refers to the cooling water and s to the steam flow. Reorganizing,

Write the difference of enthalpy for water as Cp (Tout-Tin):

This equation will let us to calculate the mass rate required. Now, let's get the enthalpy and Cp data. The enthalpies can be read from the steam tables (I attach the tables I used). According to that,
and
can be calculated as:
.
The Cp of water at 25ºC (which is the expected average temperature for water) is: 4.176
. If the average temperature is actually different, it won't mean a considerable mistake. Also we know that
, so let's work with the limit case, which is
to calculate the minimum cooling water mass rate required (A higher one will give a lower temperature difference as a result). Finally, replace data:

Answer D. The pitch is in the frequency.