To solve this problem it is necessary to apply the rules and concepts related to logarithmic operations.
From the definition of logarithm we know that,

In this way for the given example we have that a logarithm with base 10 expressed in the problem can be represented as,

We can express this also as,

By properties of the logarithms we know that the logarithm of a power of a number is equal to the product between the exponent of the power and the logarithm of the number.
So this can be expressed as

Since the definition of the base logarithm 10 of 10 is equal to 1 then

The value of the given logarithm is equal to 6
Answer:
0.015m^3
Explanation:
1 m^3 = 1000 liters
x m^3 = 15 liters
Cross multiply
xm^3 x 1000 l = 15 l
Divide both sides by 1000
xm^3 x1000/1000 = 15/1000
xm^3 = 0.015m^3
Therefore 15 liter = 0.015m^3
Answer:
9:00 AM
Explanation:
I took the test and that was the answer
Answer:
the answer will be option no b plss mark me brainliest
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter
