Answer:
In the Solar system, the Jovian planets are farther from the Sun. Majority of the extrasolar Jovian planets are closer to their stars. These are known as "Hot Jupiters". From the studies, the reason for the existence of massive Jovian planets to be closer to their star is found to be the gravitational interaction of these planets with other massive planets which pushes them closer to their stars. These planets are formed beyond the frost line initially but later on migrate inwards.
When you ask for help with a crossword clue, don't forget to tell us how many letters it has. For this one, see if "temperature" fits the space.
It doesn't matter. If the slides are truly frictionless, then
your kinetic energy at the bottom will be equal to the
potential energy you had at the top, no matter what kind
of route you took getting down.
___________________________
The only way I can think of that it would make a difference
would be if the shallow slide were REALLY REALLY long,
and you didn't have anything to eat all the way down.
Then you might lose some weight while you're on the slide,
and your mass might be less at the bottom than it was at the
top. Then, in order to have the same kinetic energy at the
bottom, you'd need to be going a little bit faster.
But if it takes less than, say, two or three days, to go down the
long, shallow slide, then this effect would probably be too small
to make any difference.
Answer: One is called the dependent variable and the other the independent variable. The independent variable is the variable the experimenter changes or controls and is assumed to have a direct effect on the dependent variable.
Explanation is in the file
tinyurl.com/wpazsebu