Answer:
50 watts
Explanation:
Applying,
Power (P) = Workdone (W)/Time(t)
But,
Work done (W) = Force (F)×distance(d)
Therefore,
P = Fd/t..................... Equation 1
Where P = power of the weightlifter, F = Force applied, d = distance, t = time.
From the question,
Given: F = 200 N, d = 0.5 m, t = 2 s
Substitute these values into equation 1
P = (200×0.5)/2
P = 100/2
P = 50 watts
Answer:
v = 2,99913 10⁸ m / s
Explanation:
The velocity of propagation of a wave is
v = λ f
in the case of an electromagnetic wave in a vacuum the speed that speed of light
v = c
When the wave reaches a material medium, it is transmitted through a resonant type process, whereby the molecules of the medium vibrate at the same frequency as the wave, as the speed of the wave decreases the only way that they remain the relationship is that the donut length changes in the material medium
λ = λ₀ / n
where n is the index of refraction of the material medium.
Therefore the expression is
v =
Let's look for the frequency of blue light in a vacuum
f =
f =
f = 6.667 10¹⁴ Hz
the refractive index of air is tabulated
n = 1,00029
let's calculate
v =
450 10-9 / 1,00029 6,667 1014
v = 2,99913 10⁸ m / s
we can see that the decrease in speed is very small
Answer:
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
Given:
Energy = 378 
To find:
Minimum frequency of light required to ionize magnesium = ?
Formula used:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
Solution:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
738 ×
= 6.63 ×
× v
v = 111.31 ×
Hertz
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
The correct answer would be the sun
Answer:
Thus induced emf is 0.0531 V
Solution:
As per the question:
Diameter of the loop, 
Thus the radius of the loop, R = 0.048 m
Time in which the loop is removed, t = 0.15 s
Magnetic field, B = 1.10 T
Now,
The average induced emf, e is given by Lenz Law:


where
= magnetic flux = 
where
A = cross sectional area
Also, we know that:



e = 0.0531 V
The sketch is shown in the figure, where I indicates the direction of the induced current.