Answer:
The minimun height is 242 [m]
Explanation:
We can solve this problem by using the principle of energy conservation, where potential energy becomes kinetic energy. We will take the point where the Falcon reaches the speed of 69 (m/s), as the point where the potential energy is zero, i.e. it will be the reference point.
At the reference point all potential energy has been transformed into kinetic energy, therefore the kinetic energy can be calculated.
![E_{k}=0.5*m*v^{2} \\ where:\\v = velocity = 69 [m/s]\\m = mass = 480[g] = 0.480[kg]\\E_{k} = kinetic energy [J]\\E_{k} =0.5*0.48*(69)^{2} \\E_{k} =1142.64[J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5C%20where%3A%5C%5Cv%20%3D%20velocity%20%3D%2069%20%5Bm%2Fs%5D%5C%5Cm%20%3D%20mass%20%3D%20480%5Bg%5D%20%3D%200.480%5Bkg%5D%5C%5CE_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5D%5C%5CE_%7Bk%7D%20%3D0.5%2A0.48%2A%2869%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%20%3D1142.64%5BJ%5D)
Now we can calculate the elevation with respect to the reference point using the definition of the potential energy.
![E_{p}=m*g*h\\ E_{p}=E_{k} \\therefore\\h= E_{p}/(m*g)\\h= 1142.64/(.48*9.81)\\h=242[m]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%20E_%7Bp%7D%3DE_%7Bk%7D%20%5C%5Ctherefore%5C%5Ch%3D%20E_%7Bp%7D%2F%28m%2Ag%29%5C%5Ch%3D%201142.64%2F%28.48%2A9.81%29%5C%5Ch%3D242%5Bm%5D)
Answer:it might be radiation
Explanation:
Answer:
V=34.2 m/s
Explanation:
Given that
Height , h= 54 m
Horizontal distance , x = 35 m
Given that , the ball is thrown horizontally , therefore the initial vertical velocity will be zero.
In vertical direction :
We know that

Now by putting the values in the above equation we got


Assume 
Thus



We also know that



In horizontal direction :


Thus the resultant velocity


V=34.2 m/s
Therefore the velocity will be 34.2 m/s.
Answer:
0.75
Explanation:
Since the static frictional force is the maximum force applied just before sliding, our frictional force, F is 300 N.
Since F = μN where μ = coefficient of static friction and N = normal force = 400 N (which is the downward force applied against the surface).
So, μ = F/N
= 300 N/400 N
= 3/4
= 0.75
So, the coefficient of static friction μ = 0.75
Answer: Option (C) is the correct answer.
Explanation:
When we heat a fluid then the movement within the fluid makes hot (less dense) material to rise and cooler (more denser) material to sink at the bottom. This process is known as convection.
Thus, in the diagram hot (less dense) water will rise and cooler (more dense) water sinks at the bottom.
Therefore, we can conclude that according to the arrow the label belongs to cooler water sinks.