To solve this problem it is necessary to use the calorimetry principle. From the statement it asks about the remaining ice, that is, to the point where the final temperature is 0 ° C.
We will calculate the melted ice and in the end we will subtract the total initial mass to find out how much mass was left.
The amount of heat transferred is defined by

Where,
m = mass
c = Specific heat
Change in temperature
There are two states, the first is that of heat absorbed by that mass 'm' of melted ice and the second is that of heat absorbed by heat from -35 ° C until 0 ° C is reached.
Performing energy balance then we will have to

Where,
= Heat absorbed by whole ice
= Heat absorbed by mass
= Heat energy by latent heat fusion/melting

Replacing with our values we have that


Rearrange and find m,

Therefore the Ice left would be


Therefore there is 0.079kg ice in the containter when it reaches equilibrium
Distance, since distance represents how far something has travelled, which would be in our case 2.5m.
Answer:
Number of electrons, n = 12 electron
Explanation:
Given that,
The distance between charged spheres, 
The object experiences an electrostatic force that has a magnitude of, 
The electric force between spheres is given by :




Let there are n number of electrons. Using quantization of electric charge we get :



n = 11.93 electrons
or
n = 12 electrons
Hence, 12 electrons produce the charge on one of the objects.
Answer: <u><em>C. Steel</em></u>
Explanation: <em><u>When a sound wave travels through a solid body consisting</u></em>
<em><u /></em>
<em><u>of an elastic material, the velocity of the wave is relatively</u></em>
<em><u /></em>
<em><u>high. For instance, the velocity of a sound wave traveling</u></em>
<em><u /></em>
<em><u>through steel (which is almost perfectly elastic) is about</u></em>
<em><u /></em>
<em><u>5,060 meters per second. On the other hand, the velocity</u></em>
<em><u /></em>
<em><u>of a sound wave traveling through an inelastic solid is</u></em>
<em><u /></em>
<em><u>relatively low. So, for example, the velocity of a sound wave</u></em>
<em><u /></em>
<em><u>traveling through lead (which is inelastic) is approximately</u></em>
<em><u /></em>
<em><u>1,402 meters per second.</u></em>
<em><u /></em>
<u><em /></u>
For instance, in an alkaline battery, the anode is typically made of zinc, and manganese dioxide acts as the cathode. And the electrolyte between and inside those electrodes contains ions. ... These free electrons congregate inside the anode (the bottom, flat part of an alkaline battery)
Hope this helps:)