One quater as your moving away more!
vf = 10 m/s. A ball with mass of 4kg and a impulse given of 28N.s with a intial velocity of 3m/s would have a final velocity of 10 m/s.
The key to solve this problem is using the equation I = F.Δt = m.Δv, Δv = vf - vi.
The impulse given to the ball with mass 4Kg is 28 N.s. If the ball were already moving at 3 m/s, to calculate its final velocity:
I = m(vf - vi) -------> I = m.vf - m.vi ------> vf = (I + m.vi)/m ------> vf = I/m + vi
Where I 28 N.s, m = 4 Kg, and vi = 3 m/s
vf = (28N.s/4kg) + 3m/s = 7m/s + 3m/s
vf = 10 m/s.
.
Kinetic Energy,K.E=1/2MV²
mass,m=16kg
velocity,v=4m/s
K.E=1/2×16×4²
=128kgm²/s²
=128 Joules
D. velocity includes rate of change and direction
Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high