To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.
Answer:
Explanation:
Given
mas of car=870 kg
coffee mug mass=0.47 kg
coefficient of static friction between mug and roof 
Coefficient of kinetic Friction 
maximum car acceleration is 
here coefficient of static friction comes in to action because mug is placed over car . If mug is moving relative to car then \mu _k is come into effect

The mass of Jupiter is 1.9 x 1027 kg.
An object in motion stays in motion while an object at rest stays at rest.
Answer:
W = 0.49 N
τ = 0.4851 Nm
Force
Explanation:
The weight force can be found as:
W = mg
W = (0.05 kg)(9.8 m/s²)
<u>W = 0.49 N</u>
The torque about the pivot can be found as:
τ = W*d
where,
τ = torque
d = distance between weight and pivot = 99 cm = 0.99 m
Therefore,
τ = (0.49 N)(0.99 m)
<u>τ = 0.4851 Nm</u>
The pivot exerts a <u>FORCE </u>on the meter stick because the pivot applies force normally over the stick and has a zero distance from stick.