First calculate the number of moles of CaBr2 given the
molar mass of 199.89 g/mol.
moles CaBr2 = 0.9182 g / (199.89 g / mol) = 4.60 x 10^-3
mol
We see that each CaBr2 contains only 1 mole of Ca, so the
moles of Ca is also:
moles Ca+ = 4.60 x 10^-3 mol
So the molarity of this is:
Molarity Ca+ = 4.60 x 10^-3 mol / 0.500 L
<span>Molarity Ca+ = 9.19 x 10^-3 M</span>
False. A physical change does not create a new substance.
Answer:
0.7μM = 0.6 μM = 0.5 μM > 0.4 μM > 0.3 μM > 0.2 μM
Explanation:
An enzyme solution is saturated when all the active sites of the enzyme molecule are full. When an enzyme solution is saturated, the reaction is occurring at the maximum rate.
From the given information, an enzyme concentration of 1.0 μM Y can convert a maximum of 0.5 μM AB to the products A and B per second means that a 1.0 M Y solution is saturated when an AB concentration of 0.5 M or greater is present.
The addition of more substrate to a solution that contains the enzyme required for its catalysis will generally increase the rate of the reaction. However, if the enzyme is saturated with substrate, the addition of more substrate will have no effect on the rate of reaction.
<em>Therefore the reaction rates at substrate concentrations of 0.7μM, 0.6 μM, and 0.5 μM are equal. But the reaction rate at substrate concentrations of 0.2 μM is lower than at 0.3 μM, 0.3 μM is lower than 0.4 μM and 0.4 μM is lower than 0.5 μM, 0.6 μM and 0.7 μM.</em>
. The energy of shells in a hydrogen atom is calculated by the formula E = -Eo/n^2 where n is any integer, and Eo = 2.179X10^-18 J. So, the energy of a ground state electron in hydrogen is:
E = -2.179X10^-18 J / 1^2 = -2.179X10^-21 kJ
Consequently, to ionize this electron would require the input of 2.179X10^-21 kJ
2. The wavelength of a photon with this energy would be:
Energy = hc/wavelength
wavelength = hc/energy
wavelength = 6.626X10^-34 Js (2.998X10^8 m/s) / 2.179X10^-18 J = 9.116X10^-8 m
Converting to nanometers gives: 91.16 nm
3. Repeat the calculation in 1, but using n=5.
4. Repeat the calculation in 2 using the energy calculated in 3.
Answer:
It works because of the significant principle of piezoelectricity
Explanation: