The balanced equation for the above reaction is as follows;
2HCl + K₂SO₃ ---> 2KCl + H₂O + SO₂
stoichiometry of HCl to SO₂ is 2:1
number of moles of HCl reacted - 15.0 g / 36.5 g/mol = 0.411 mol
according to molar ratio
number of SO₂ moles formed - 0.411 mol /2 = 0.206 mol
since we know the number of moles we can find volume using ideal gas law equation
PV = nRT
where
P - pressure - 1.35 atm x 101 325 Pa/atm = 136 789 Pa
V - volume
n - number of moles - 0.206 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 325 K
substituting values in the equation
136 789 Pa x V = 0.206 mol x 8.314 Jmol⁻¹K⁻¹ x 325 K
V = 4.07 L
volume of SO₂ formed is 4.07 L
In an ideal gas, there are no attractive forces between the gas molecules, and there is no rotation or vibration within the molecules. The kinetic energy of the translational motion of an ideal gas depends on its temperature. The formula for the kinetic energy of a gas defines the average kinetic energy per molecule. The kinetic energy is measured in Joules (J), and the temperature is measured in Kelvin (K).
K = average kinetic energy per molecule of gas (J)
kB = Boltzmann's constant ()
T = temperature (k)
Kinetic Energy of Gas Formula Questions:
1) Standard Temperature is defined to be . What is the average translational kinetic energy of a single molecule of an ideal gas at Standard Temperature?
Answer: The average translational kinetic energy of a molecule of an ideal gas can be found using the formula:
The average translational kinetic energy of a single molecule of an ideal gas is (Joules).
2) One mole (mol) of any substance consists of molecules (Avogadro's number). What is the translational kinetic energy of of an ideal gas at ?
Answer: The translational kinetic energy of of an ideal gas can be found by multiplying the formula for the average translational kinetic energy by the number of molecules in the sample. The number of molecules is times Avogadro's number:
Hydrocarbons are carbon and hydrogen. Methane is CH4, and propane is C3H8. Methene is CH3, and propene is C3H6. Carbohydrates are hydrates of carbon. They <span>have the general formula (CH2O)x. thats how it differs
</span>
<span>False. Almost all of the oxygen on Earth is found in the oceans.</span>
the compounds in which phosphorous posses the highest possible oxidation have to mention here.
The species in which phosphorous have the highest oxidation state are: H₃PO₄, P₂O₅, PCl₅
The possible oxidation state of phosphorous is III and V. The highest oxidation state is V. There are several compounds in which phosphorous posses the +5 oxidation state. Like- Phosphoric acid (H₃PO₄), phosphorous pentoxide (P₂O₅), Phosphorous chloride (PCl₅) etc.
The oxidation state of an element depends upon the valence electron the valence shell of phosphorous is 3s² 3p³. Thus there are 5 electrons, as it has vacant 3d orbital thus it can easily form compound having +5 oxidation state.