M = Sr (strontium)
<em>Step 1.</em> Calculate the <em>moles of CO_2</em>.
Moles of CO_2 = 0.395 g CO_2 × (1 mol CO_2/44.01 g CO_2)
= 0.008 975 mol CO_2
<em>Step 2</em>. Calculate the <em>moles of MCO_3</em>.
Moles of MCO_3 = 0.008 975 mol CO_2 × (1 mol MCO_3/1 mol CO_2)
= 0.008 975 mol MCO_3
<em>Step 3</em>. Calculate the molar mass of <em>MCO_3</em>
MM = grams/moles = 1.324 g/0.008 75 mol = 147.5 g/mol
<em>Step 4</em>. Calculate the <em>atomic mass of M</em>
M_r = <em>x</em> + 12.01 + 3×16.00 = <em>x</em> + 60.01 = 147.5
<em>x</em> = 147.5 – 60.01 = 87.5
<em>Step 5. Identify M</em>.
The element with the closest atomic mass is Sr (A_r = 87.6).
∴ M = Sr and the compound is SrCO_3.
Mechanical weathering breaks rocks into many pieces creating more surface area for chemical weathering
At STP volume is 22.4 L
Molar mass NO₂ = 46.0 g/mol
1 mole ---------- 22.4 L
? mole ---------- 11.4 L
moles = 11.4 * 1 / 22.4
moles = 11.4 / 22.4
= 0.5089 moles of NO₂
Mass NO₂ :
moles NO₂ * molar mass
0.5089 * 46.0
= 23.4094 g of NO₂
hope this helps!
Answer:
See the answer below
Explanation:
<u>A scientist B might want to replicate the experiment of another scientist A in order to assess the claims made by scientist A.</u> In other words, replication of the experiment of another scientist is done to see if a similar outcome would be arrived at or there would be variations.
<em>The claims made by a scientist while reporting the outcome of a particular experiment must be reproducible by another scientist under similar conditions. Otherwise, the claims are said to be false.</em>
You are looking for ADHESION