Answer:
(a). The kinetic energy stored in the fly wheel is 46.88 MJ.
(b). The time is 1.163 hours.
Explanation:
Given that,
Radius = 1.50 m
Mass = 475 kg
Power 
Rotational speed = 4000 rev/min
We need to calculate the moment of inertia
Using formula of moment of inertia

Put the value into the formula


(a). We need to calculate the kinetic energy stored in the fly wheel
Using formula of K.E

Put the value into the formula




(b). We need to calculate the length of time the car could run before the flywheel would have to be brought backup to speed
Using formula of time



Hence, (a). The kinetic energy stored in the fly wheel is 46.88 MJ.
(b). The time is 1.163 hours.
Answer:
(a) g = 8.82158145
.
(b) 7699.990192m/s.
(c)5484.3301s = 1.5234 hours.(extremely fast).
Explanation:
(a) Strength of gravitational field 'g' by definition is
, here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.
r = 6721,000 meters, putting this value in above equation gives g = 8.82158145
.
(b) We have to essentially calculate centripetal acceleration that equals new 'g'.
here g is known, r is known and v is unknown.
plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.
(c) S = vT, here T is time period or time required to complete one full revolution.
S = earth's circumfrence , V is calculated in (B) T is unknown.
solving for unknown gives T = 5484.3301s = 1.5234hours.
Answer:
c
motorcycle, telephone, piano, lawn mower
Answer:

Explanation:
given,
side slope = 1 : 1
hydraulic depth(y) = 5 ft
bottom width (b)= 8 ft
x = 1
Q = 2,312 ft³/s
n = 0.013
slope of channel = ?



R = 4.69 m
using manning's equation



S = 0.406

Answer:
22 N applied force
Explanation: Since they are both pushing the wagon in the same direction the force adds up.