Answer: The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds
Explanation:
Force applied on the golf ball = 
Mass of the ball = 0.05 kg
Velocity with which ball is accelerating = 44 m/s
Time period over which forece applied = t


Newton seconds
The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds
Answer: 24
Explanation:
Given the following equation:
Where
is the number of mushrooms in a pizza and
the number of pizzas.
If we know the restaurant will make 8 pizzas (
), then:
This is the needed number of mushrooms for 8 pizzas
Work done against gravity to climb upwards is always stored in the form of gravitational potential energy
so we can say

here h = vertical height raised
so here we know that

here we have

now from above equation


so work done will be given by above value
Given: Mass m = 44 Kg; Velocity v = 10 m/s
Required: Kinetic energy K.E = ?
Formula: K.E = 1/2 mv²
K.E 1/2 (44 Kg)(10 m/s)²
K.E = 2,200 Kg.m²/s²
K.E = 2,200 J Answer is A
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s