If <em>the isotherms</em> are spaced closely together over some portion of the map, there is a drastic temperature change over that portion.
Answer:
a)1.37 s
b)∞ ( Infinite)
Explanation:
Given that
L= 47 cm ( 1 m =100 cm)
L= 0.47 m
a)
On the earth :
Acceleration due to gravity = g
We know that time period of the simple pendulum given as

Here

Now by putting the values

T=1.37 s
b)
Free falling elevator :
When elevator is falling freely then
( This is case of weightless motion)
Therefore

T=∞ (Infinite)
Answer:
875 N
Explanation:
From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because
Force = mass * acceleration, while
Acceleration = velocity / time, basically
Force = mass * velocity / time.
We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.
Going by the formula I stated, we can then say that
Force = 250 * 3.5 / 1
Force = 875 N
This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N
Answer:
a) v = 19,149.6 m/s
b) f = 95%
c) t = 346.5min
Explanation:
First put all values in metric units:

The equation of motion you need is:
where
is the final velocity, a is acceleration and t is time in hours.
Since the spaceship starts from 0 velocity:

Next, you need to calculate the distances traveled on each interval, considering that both starting and final intervals travel the same distance because the acceleration and time are equal. For this part you need the next motion equation:

solving for first and last interval:
Since the spaceship starts and finish with 0 velocity:

Then the ship traveled
at constant speed, which means that it traveled:

Which in percentage is 95% of the trip.
to calculate total time you need to calculate the time used during constant speed:

That added to the other interval times:

The equation is
s= d/t
In this case you would have to write it out as:
s= 20/5
Speed = 4