The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
<u>Answer:</u>
<u>For a:</u> The balanced equation is 
<u>For c:</u> The balanced equation is 
<u>Explanation:</u>
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of both
and
and 3 in front of 
For the balanced chemical equation:

The given balanced equation follows:

The given equation is already balanced.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of 
For the balanced chemical equation:
The given balanced equation follows:

The given equation is already balanced.
Answer:
distilled water I guess !
Just a guess though
If you find this useful, please mark my answer as the brainliest.
Explanation:
If you find this useful, please mark my answer as the brainliest.
distilled water
Explanation:
Some students investigated osmosis in raw potato sticks. The students measured the mass of three potato sticks using an electronic balance. The students left each potato stick in one of the three different liquids for 5 hours:i. distilled water. ii. dilute sodium chloride solution. iii. concentrated sodium chloride solution. After 5 hours they measured the mass again and calculated the change in mass. 1. Predict which of the liquids would cause the largest decrease in mass of a potato stick. 2. After the experiment, the students noticed that the potato stick with the lowest mass was soft and floppy. Explain why the potato stick had become soft and floppy. 3. The students followed the same experimental procedure with boiled potato sticks and found no overall change in mass in any of the solutions. Suggest why the mass of the boiled potato sticks remained the same.
a. True.
There is always an equilibrium of the type
NH₃⁺CHRCOOH ⇌ NH₃⁺CHRCOO⁻ ⇌ NH₂CHRCOO⁻
The compound is <em>always in an ionized form</em>.
There are no unionized NH₂CHRCOOH molecules in the solution.