Answer:
1.83moles
Explanation:
Given parameters:
Mass of methane given = 29.2g
Unknown:
Number of moles = ?
Solution:
To find the number of moles in this mass of a compound;
Number of moles =
Molar mass of CH₄ = 12 + 4(1) = 16g/mol
Now;
Number of moles =
= 1.83moles
Answer:
Physical and chemical changes are similar because they are both caused by the interaction of two or more particles.
Explanation:
Physical and chemical changes are similar because they are both caused by the interaction of two or more particles. Physical changes occur through vibrations, impacts, and other forms of movement. Chemical changes are caused by the interaction of two or more atoms or molecules.
Answer:
Br - C ≡ N
Explanation:
To draw the Lewis line-bond structure we need to bear in mind the octet rule, which states that in order to gain stability each <em>atom tends to share electrons until it has 8 electrons in its valence shell</em>.
- C has 4 e⁻ in its valence shell so it will form 4 covalent bonds.
- Br has 7 e⁻ in its valence shell so it will form 1 covalent bond.
- N has 5 e⁻ in its valence shell so it will form 3 covalent bonds.
The most stable structure that respects these premises is:
Br - C ≡ N
It does not have any H atom.
Answer:
A. 0.143 M
B. 0.0523 M
Explanation:
A.
Let's consider the neutralization reaction between potassium hydroxide and potassium hydrogen phthalate (KHP).
KOH + KHC₈H₄O₄ → H₂O + K₂C₈H₄O₄
The molar mass of KHP is 204.22 g/mol. The moles corresponding to 1.08 g are:
1.08 g × (1 mol/204.22 g) = 5.28 × 10⁻³ mol
The molar ratio of KOH to KHC₈H₄O₄ is 1:1. The reacting moles of KOH are 5.28 × 10⁻³ moles.
5.28 × 10⁻³ moles of KOH occupy a volume of 36.8 mL. The molarity of the KOH solution is:
M = 5.28 × 10⁻³ mol / 0.0368 L = 0.143 M
B.
Let's consider the neutralization of potassium hydroxide and perchloric acid.
KOH + HClO₄ → KClO₄ + H₂O
When the molar ratio of acid (A) to base (B) is 1:1, we can use the following expression.

Answer:
The higher the frequency, the shorter the wavelength
Explanation:
All light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.