It is true that human impact on one system leads to changes in more of Earth’s systems.
Answer: Option A
<u>Explanation:</u>
Human impact had created large impacts on Earth’s systems. The pollution in air, deforestation, dumping of lakes lead to several changes in environment. Also emission of carbon, methane and other hazardous gases from several manufacturing unit effect the environment.
Along with this, increase in usage of non-renewable fuels and release of CFC's emitted from AC’s, fridge lead to elimination of ozone layer making the environment open to direct UV radiation. So yes, it is true that human impact on one system leads to changes in more of Earth’s systems.
Answer:
The mass of the precipitate that AgCl is 3.5803 g.
Explanation:
a) To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (NaCl) = 1.46 g
Molar mass of sulfuric acid = 58.5 g/mol
Volume of solution = 

Putting values in above equation, we get:

0.09982 M is the concentration of the sodium chloride solution.
b) 
Moles of NaCl = 
according to reaction 1 mol of NaCl gives 1 mol of AgCl.
Then 0.02495 moles of NaCl will give:
of AgCl
Mass of 0.02495 moles of AgCl:

The mass of the precipitate that AgCl is 3.5803 g.
Answer:
The answer is in the explanation.
Explanation:
A solution is defined as the <em>homogeneous mixture </em>of a solute (In this case, NaCl) and the solvent (water).
To prepare 1L of the solution, the student can weigh the 3g of NaCl in the volumetric flask but need to add slowly water to dissolve the NaCl (That is very soluble in water). When all NaCl is dissolved the student must transfer the solution to the 1L volumetric flask. Then, you must add more water to the beaker until "Clean" all the solute of the beaker to transfer it completely to the volumetric flask.
<u>The frequency of </u><u>collisions </u><u>between the two reactants increases as the </u><u>concentration </u><u>of the reactants increases</u>. When collisions happen, they don't always cause a reaction (atoms misaligned or insufficient energy, etc.). Higher concentrations result in more collisions and reaction opportunities.
Increasing a reactant's surface area increases the frequency of collisions and thus the reaction rate. The surface area of several smaller particles is greater than that of a single large particle. The greater the available surface area for particles to collide, the faster the reaction will occur.
<h3>How does concentration affect the rate of collisions between reactants?</h3>
Thus, we can conclude that by increasing the concentration of Mg in the reaction mixture we increase the rate of collisions between the reactants in this reaction.
<h3>What does the half reaction of an oxidation-reduction reaction show?</h3>
Iron gains electrons in the half reaction of an oxidation-reduction reaction. What does iron's electron gain mean? It has been reduced. Predict the product that will precipitate out of the reaction using the solubility rules and the periodic table.
Learn more about collisions of particles:
brainly.com/question/14897392
#SPJ4