Answer:
We need 0.375 mol of CH3OH to prepare the solution
Explanation:
For the problem they give us the following data:
Solution concentration 0,75 M
Mass of Solvent is 0,5Kg
knowing that the density of water is 1g / mL, we find the volume of water:

Now, find moles of
are needed using the molarity equation:
therefore the solution is prepared using 0.5 L of H2O and 0.375 moles of CH3OH, resulting in a concentration of 0,75M
Answer:
K₂CO₃
Explanation:
Given parameters:
Number of moles of K = 0.104mol
Number of moles of C = 0.052mol
Number of moles of O = 0.156mol
Method
From the given parameters, to calculate the empirical formula of the elements K, C and O, we reduce the given moles to the simplest fraction.
Empirical formula is the simplest formula of a compound and it differs from the molecular formula which is the actual formula of a compound.
- Divide the given moles through by the smallest which is C, 0.052mol.
- Then approximate values obtained to the nearest whole number of multiply by a factor to give a whole number ratio.
- This is the empirical formula
Solution
Elements K C O
Number of moles 0.104 0.052 0.156
Dividing by the
smallest 0.104/0.052 0.052/0.052 0.156/0.052
2 1 3
The empirical formula is K₂CO₃
Answer:
V2= 1.03L
Explanation:
Start off with what you are given.
V^1: 1.00L
T^1: 23°C
V^2?
T^2: 33°C
If you know your gas laws, you have to utilise a certain gas law called Charles' Law:
V^1/T^1 = V^2/T^2
Remember to convert Celsius values to Kelvin whenever you are dealing with gas problems. This can be done by adding 273 to whatever value in Celsius you have.
(23+273 = 296) (33+273 = 306)
Multiply crisscross
1.00/296= V^2/306
296V^2 = 306
Dividing both sides by 296 to isolate V2, we get
306/296 = 1.0337837837837837837837837837838
V2= 1.03L
Answer:
The speed of the 60.0 kg skater should be 0.281 m/s
Explanation:
<u>Step 1: </u>Data given
Mass of skater 1 = 45.0 kg
speed of skater 1 = 0.375 m/s
Mass of skater 2 = 60.0 kg
<u>Step 2:</u> Calculate the speed of skater 2
To solve this problem, we will use 'Conservation of momenton'. This means the momentum before the push equals the momentum after.
momentum p = m*v
Momentum p(before) = momentum p(after)
m1*v1 = m2 * v2
⇒ with m1 = mass of skater 1 = 45.0 kg
⇒ with v1 = the velocity of skater 1 = 0.375 m/s
⇒ with m2 = the mass of skater 2 = 60.0 kg
⇒ with v2 = the velocity of skater 2 = TO BE DETERMINED
45.0 * 0.375 = 60.0 * v2
v2 = (45.0*0.375)/60
v2 = 0.281 m/s
The speed of the 60.0 kg skater should be 0.281 m/s