Option 3- Avogadro's, Charles's and Boyle's
Answer:
I. Increasing pressure will allow more frequent successful collision between particles due to the particles being closer together.
II. Rate of reaction increases due to more products being made; as increased pressure favours the exothermic side of the equilibrium.
III. Increasing temperature provides particles lots of (Kinetic) energy, for more frequent successful collision due to the particles moving at a faster rate than before. However, favouring the endothermic side of the equilibrium due to lots of energy required to break and form new bonds.
IV. Rate of reaction increases due to increase temperature favouring both directions of the equilibrium - causing products to form faster.
Hope this helps!
<u>Answer:</u> The equilibrium concentration of HCl is 
<u>Explanation:</u>
We are given:
Moles of
= 0.564 moles
Volume of vessel = 1.00 L
Molarity is calculated by using the equation:

Molarity of 
The given chemical equation follows:

<u>Initial:</u> 0.564
<u>At eqllm:</u> 0.564-x x x
The expression of
for above equation follows:
![K_c=[NH_3][HCl]](https://tex.z-dn.net/?f=K_c%3D%5BNH_3%5D%5BHCl%5D)
The concentration of pure solid and pure liquid is taken as 1.
We are given:

Putting values in above equation, we get:

Negative sign is neglected because concentration cannot be negative.
So, ![[HCl]=2.26\times 10^{-3}M](https://tex.z-dn.net/?f=%5BHCl%5D%3D2.26%5Ctimes%2010%5E%7B-3%7DM)
Hence, the equilibrium concentration of HCl is 
Heat energy is the amount of heat there is in a substance. This may be cold heat or warm heat. Temperature is how hot or cold a substance is. So because there is a higher volume of heat in the iceberg, we say it has more heat energy.