I believe the answer is D.
Scientists are biased, and want to prove their specific hypothesis is right.
Webb has calculated the percent composition of a compound. He can check his result by adding them to see if they equal up to 100. Why? Well, percent composition tells the quantity of elements with 100 as a base of total amount. This means that it will have to add to 100 to check the result. You would add up all of the values of percent composition of elements to see if they equal 100, and if they do, the results are accurate.
Your final answer: Webb can check his result by seeing if they add up to 100, considering that is the base total quantity.
Look to be honest, I don't know how to work out the problem, but my teacher, and my says it takes 8 minutes for the Sun's light to reach
hope my answer works :)
Answer:
36
Explanation:
Since the sample was undiluted the number of colonies is the number that grew on the nutrient agar which is 36 colonies. If it was diluted for example let say 0.1 ml from a dilution in which 1 ml of the sample was added to 9 ml of water, and it grew colonies then 0.1 ml yielded 6 colonies, 1 ml of the diluted sample will yield 60 colonies and 10 ml will have 600 colonies and therefore the 1 ml undiluted sample will have 600 colonies.
Answer:
Density of concentrated H2SO4 = 1.99g/cm^3 = 1991.79Kg/m^3
Explanation:
mass of empty flask = 78.23g mass of flask filled when with water = 593.63g.
mass of flask filled when with concentrateds sulfuric acid, H2SO4 = 1026.57g
Mass of water = (mass of flask filled when with water) -
(mass of empty flask) = 593.63g - 78.23g = 515.4g
Volume of flask = volume of water = volume of concentrateds sulfuric acid, H2SO4 =
(mass of water)/ density of water) = 515.4g/1.00g/cm^3 = 515.4cm^3
The density of concentrated sulfuric acid is given by
Density of concentrated H2SO4 = (mass of H2SO4) ÷ (volume of H2SO4) = 1026.57g/515.4cm^3 = 1.99g/cm^3 = 1991.79Kg/m^3