Answer:
Ammonia is an Arrhenius base and a Brønsted-Lowry base.
Explanation:
An Arrhenius base is any substance which, when it is dissolved in an aqueous solution, produces hydroxide (OH^-), ions in solution. An aqueous solution is a solution that has water present in it.
A Bronsted-Lowry base is a substance that accepts a proton, that is, a hydrogen ion (H^+).
Looking at the equation above, ammonia satisfies both characteristics. We can see that when ammonia is dissolved in water, hydroxide ions is produced in the solution. Hence it is an Arrhenius base. Similarly, the hydroxide ion is formed when ammonia accepts a proton. This is a characteristic of a Brownstead-Lowry base. Hence ammonia is both an Arrhenius base and a Brownstead-Lowry base.
Answer:
- <u><em>The first statement is false: a.At equilibrium, equal amounts of products and reactants are present. ΔG° is a function of Keq.</em></u>
Explanation:
When one part of a statement is false, the whole statement is false.
At <em>equilibrium,</em> the amounts of products and reactants does not have to be equal.
At equlibrium the rates of the forward reaction and the reverse reaction must be equal.
An equilibrium reaction may be represented by:
That represents two reactions:
- Direct reaction: A + B → C + D (A and B yield C and D)
- Reverse reaction: A + B ← C + D (C and D yield A and B: note that the arrow goes from right to left)
So, it is when the direct and the forward rates are equal that there is not net change in the amounts of all the species and so the reaction is is equilibrium).
As per the other statement, both parts are true:
- When reactants become products, they do so through an intermediate transitrion state: when the reactants approach each other and collide with enough energy and appropiate position, the bonds start to break and the bonds of the products start to form. This is the transition state.
- Most biocatalysts are proteins: enzymes are simply proteins, with specific structures, that may accelerate or even deceralate biochemical reactions.
Answer:
See the explanation and examples below, please.
Explanation:
To calculate the molar mass of a substance you must have the atomic weights of each component:
Example NaCl ionic compound (sodium chloride, known as table salt)
Molar mass NaCl = Atomic weight Na + Atomic weight Cl = 22, 98 gr + 35, 45gr = 58.35 grams / mol
Example covalent compound HCl (hydrochloric acid) = Atomic weight H + Atomic weight Cl = 1, 004gr + 35, 45 gr = 36, 45 grams / mol
In the case of having compound H20 (water), it is calculated:
Molar mass NaCl = 2 x (Atomic weight H) + Atomic weight 0 (the atomic weight of 1 mol of Hydrogen is multiplied by 2)
I think the answer is A, ozone depletion