After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Evaporation (or another word to use is water vapor.)
The radio frequencies push one air molecule that then bumps into a different air molecule.....which then hits another and another causing a line of crashing molecules that lead inside your ear and hits your ear drum causing it to vibrate which causes the sounds.
The characteristics of high energy wave length are:
- High Frequencies
- Short wave length
And in term of color, it will be located on the red spectrum.