Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
A chemical property of gasoline is that it will burn in air. Gasoline is a substance that is used to power automobiles. Gasoline will oxidize
in air which means that it reacts with oxygen in air. Hope this answers the question. Have a nice day.
Yes ggejekkekwujhhnjhhdndnksiiieinrnnfjdjjnnsnndnbduiiitnnfnsoqoosofndbdod
Answer:
90 meters
Explanation:
Given:
x₀ = 0 m
v₀ = 0 m/s
v = 30 m/s
t = 6 s
Find:
x
x = x₀ + ½ (v + v₀)t
x = 0 + ½ (30 + 0)(6)
x = 90
The car travels 90 meters.
Einstein's theory of General Relativity states that space-time is able to be warped in the presence of mass or energy. This warping is what "tells" matter how to move in its presence. In the paraphrased words of physicist John Wheeler, matter tells space-time how to warp, and warped space-time tells matter how to move.