Answer:
The answer is the 1st one
Answer:
E = 10t^2e^-10t Joules
Explanation:
Given that the current through a 0.2-H inductor is i(t) = 10te–5t A.
The energy E stored in the inductor can be expressed as
E = 1/2Ll^2
Substitutes the inductor L and the current I into the formula
E = 1/2 × 0.2 × ( 10te^-5t )^2
E = 0.1 × 100t^2e^-10t
E = 10t^2e^-10t Joules
Therefore, the energy stored in the inductor is 10t^2e^-10t Joules
Answer:
- Glaciers melt
- The seas rise
- Temperature changes
- Humans add heat trapping greenhouse gasses
Answer:
the speed of the block when it reaches point B is 14 m/s
Explanation:
Given that:
mass of the block slides = 1.5 - kg
height = 10 m
Force constant = 200 N/m
distance of rough surface patch = 20 m
coefficient of kinetic friction = 0.15
In order to determine the speed of the block when it reaches point B.
We consider the equation for the energy conservation in the system which can be represented by:
v = 14 m/s
Thus; the speed of the block when it reaches point B is 14 m/s
It's is a cell wall. A cell wall surround plant cells and it is a nonliving rigid layer that protects the cell from the outside.