Answer:
86 turns
Explanation:
Parameters given:
Magnetic torque, τ = 1.7 * 10^(-2) Nm
Area of coil, A = 9 * 10^(-4) m²
Current in coil, I = 1.1 A
Magnetic field, B = 0.2 T
The magnetic toque is given mathematically as:
τ = N * I * A * B
Where N = number of turns
To find the number of turns, we make N subject of formula:
N = τ/(I * A * B)
Therefore:
N = (1.7 * 10^(-2)) / (1.1 * 9 * 10^(-4) * 0.2)
N = 85.85 = 86 turns (whole number)
The number of turns must be 86.
Answer:
Natalie says that all things with mass have a gravitational field, but the force is very weak and cannot be perceived around small objects.
Explanation:
The force due to gravity is proportional to the mass of the object and inversely proportional to the square of the distance between objects. The Earth is so massive that the force due to its gravity is much greater than the force between objects on the counter.
If there were no friction, the objects might move toward each other, depending on what other masses were near them tending to cause them to move in other directions.
Natalie's explanation is about the best.
__
<em>Additional comment</em>
The universal gravitational constant was determined by Henry Cavendish in the late 18th century using lead balls weighing 1.6 pounds and 348 pounds. His experiment was enclosed in a large wooden box to minimize outside effects. While these masses are somewhat greater than those of a glue bottle and stapler, the experiment shows the force of gravity between "small" objects <em>can</em> be measured.
Answer:
12m
Explanation:
To obtain the answer to the question given, we must observe the characteristics of image formed by a plane mirror.
The image formed by a plane mirror have the following characteristics:
1. Laterally inverted.
2. Same distance as the object from the mirror.
3. Same height as the object.
4. Virtual.
With the above information, we can calculate the distance between the boy and his image as follow:
Initially:
Object distance (u) = 4m
Image distance (v) = 4m
The boy moved 2m away, therefore:
Object distance (u) = 2 + 4 = 6m
Image distanc(v) = 2 + 4 = 6m
The distance between the boy and his image will be the sum of his distance (u) and image distance (v) i.e (u + v)
The distance between the boy and his image = 6 + 6 = 12m
Therefore, the distance between the boy and his image is 12m.
Answer:
This link was diagram
Explanation:
https://doubtnut.app.link/FnsNC80Dccb
Answer:
Explanation:
Since the wires attract each other , the direction of current will be same in both the wires .
Let I be current in wire which is along x - axis
force of attraction per unit length between the two current carrying wire is given by
x 
where I₁ and I₂ are currents in the wires and d is distance between the two
Putting the given values
285 x 10⁻⁶ = 10⁻⁷ x 
I₂ = 16.76 A
Current in the wire along x axis is 16.76 A
To find point where magnetic field is zero due the these wires
The point will lie between the two wires as current is in the same direction.
Let at y = y , the neutral point lies
k 2 x
= k 2 x 
25.5y = 16.76 x .3 - 16.76y
42.26 y = 5.028
y = .119
= .12 m