Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 
Answer:
Magnetic fields exist near a magnet, farther away from a magnet, and within a magnet.
So, the answer is D. All of the above.
Let me know if this helps!
The time taken by traveler to cover the distance is,

Substitute the known values,

Therefore, the time taken by traveler to cover the distance is 89.3 s.
Answer:
The magnetic field at a distance of 19.8 cm from the wire is 1.591 mT
Explanation:
Given;
first magnetic field at first distance, B₁ = 2.50 mT
first distance, r₁ = 12.6 cm = 0.126 m
Second magnetic field at Second distance, B₂ = ?
Second distance, r₂ = ?
Magnetic field for a straight wire is given as;

Where:
μ is permeability
B is magnetic field
I is current flowing in the wire
r distance to the wire

Therefore, the magnetic field at a distance of 19.8 cm from the wire is 1.591 mT