The four equations for acceleration are obtained from the three equations of motion and from second law of motion.
Explanation:
Acceleration is defined as the rate of change of velocity with respect to time. So the change in velocity with respect to time can be determined using the three equations of motions.
So from the first equation of motion, v = u + at , we can determine the value of acceleration if time taken, final and initial velocity is known. The equation can be re-written as 
Similarly, from the second equation of motion, s = ut + 1/2 at², we can determine the equation for acceleration as 
So this is second equation for acceleration.
Then from the third equation of motion, 
the acceleration equation is determined as 
In addition to these three equation, another equation is present to determine the acceleration with respect to force from the Newton's second law of motion. F = Mass × acceleration. From this, acceleration = Force/mass.
So, these are the four equations for acceleration.
I believe the answer is C
Hope this helps :)
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
Answer:
8 N North.
Explanation:
Given that,
One force has a magnitude of 10 N directed north, and the other force has a magnitude of 2 N directed south.
We need to find the magnitude of net force acting on the object.
Let North is positive and South is negative.
Net force,
F = 10 N +(-2 N)
= 8 N
So, the magnitude of net force on the object is 8 N and it is in North direction (as it is positive). Hence, the correct option is (d) "8N north".
La velocidad vertical del tanque después de caer 10 m es 14 m/seg .
La velocidad vertical del tanque se calcula mediante la aplicación de la fórmula de velocidad , la componente vertical Vfy, del movimiento horizontal como se muestra a continuación :
Vfy=?
h = 10 m
Fórmula de Velocidad vertical Vfy:
Vfy² = 2*g*h
Vfy= √(2*9.8m/seg2* 10m )
Vfy= 14 m/seg