1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
7

A golf ball is hit with a golf club. While the ball flies through the air, which forces act on the ball? Neglect air resistance.

Physics
2 answers:
34kurt3 years ago
6 0

To solve this problem it is necessary to apply the equation related to the Gravitational Force, the equation describes that

F = \frac{GMm}{r^2}

Where,

G = Gravitational Universal Constant

M = Mass of Earth (or Bigger star)

m = Mass of Object  (or smallest star)

r = Radius

From the statement we know that once the impact is made, the golf ball is subjected to the forces that are exerted in nature. Since the air resistance, which would represent the drag force, is ignored. Only the forces related to gravity remain.

The gravitational force carries 'pushes' or 'attracts' the body towards the earth, while the speed decreases as it reaches its maximum height.

When the ball has reached its maximum height only the force of gravity begins to act on it, generating the attraction to the earth in parabolic motion.

Therefore the correct answer is B.

Gnom [1K]3 years ago
4 0

Answer:

all of these

Explanation:

:)

You might be interested in
A 3.53-g lead bullet traveling at 428 m/s strikes a target, converting its kinetic energy into thermal energy. Its initial tempe
Taya2010 [7]

Complete question:

A 3.53-g lead bullet traveling at 428 m/s strikes a target, converting its kinetic energy into thermal energy. Its initial temperature is 40.0°C. The specific heat is 128 J/(kg · °C), latent heat of fusion is 24.5 kJ/kg, and the melting point of lead is 327°C.

(a) Find the available kinetic energy of the bullet. J

(b) Find the heat required to melt the bullet. J

Answer:

Part (a) the available kinetic energy of the bullet is 323.32 J

Part (b) the heat required to melt the bullet is 216.17 J

Explanation:

Given;

mass of the bullet = 3.53 g = 0.00353 kg

velocity of the bullet = 428 m/s

initial temperature of the bullet = 40.0°C

final temperature of the bullet =  327°C

specific heat capacity, c= 128 J/(kg · °C)

latent heat of fusion, Hf  = 24.5 kJ/kg

Part (a) the available kinetic energy of the bullet. J

KE = ¹/₂ × mv²

KE = ¹/₂ × 0.00353 × 428²

     = 323.32 J

Part (b) the heat required to melt the bullet. J

This is the thermal energy required to increase the temperature of the bullet and the heat energy required to melt the bullet.

Quantity of heat required to raise the temperature of the bullet:

Q = mcΔT

   = 0.00353 × 128 × (327-40)

   = 0.00353 × 128 × 287

   = 129.68 J

Quantity of heat required to melt the bullet:

Q = mH_f

Q = 0.00353 × 24500

   = 86.49 J

TOTAL energy required to melt the bullet = 129.68 J + 86.49 J

                                                                      = 216.17 J

3 0
3 years ago
What is shot-curciting​
rjkz [21]

Answer:

A path that allows most of the current in an electric circuit to flow around or away from the principal elements or devices in the circuit.

3 0
3 years ago
A man walks along a straight path at a speed of 4 ft/s. A searchlight is located on the ground 6 ft from the path and is kept fo
BARSIC [14]

We are given that,

\frac{dx}{dt} = 4ft/s

We need to find \frac{d\theta}{dt} when x=8ft

The equation that relates x and \theta can be written as,

\frac{x}{6} tan\theta

x = 6tan\theta

Differentiating each side with respect to t, we get,

\frac{dx}{dt} = \frac{dx}{d\theta} \cdot \frac{d\theta}{dt}

\frac{dx}{dt} = (6sec^2\theta)\cdot \frac{d\theta}{dt}

\frac{d\theta}{dt} = \frac{1}{6sec^2\theta} \cdot \frac{dx}{dt}

Replacing the value of the velocity

\frac{d\theta}{dt} = \frac{1}{6} cos^2\theta (4)^2

\frac{d\theta}{dt} = \frac{8}{3} cos^2\theta

The value of cos \theta could be found if we know the length of the beam. With this value the equation can be approximated to the relationship between the sides of the triangle that is being formed in order to obtain the numerical value. If this relation is known for the value of x = 6ft, the mathematical relation is obtained. I will add a numerical example (although the answer would end in the previous point) If the length of the beam was 10, then we would have to

cos\theta = \frac{6}{10}

\frac{d\theta}{dt} = \frac{8}{3} (\frac{6}{10})^2

\frac{d\theta}{dt} = \frac{24}{25}

Search light is rotating at a rate of 0.96rad/s

4 0
3 years ago
I need to figure out A but i’m not sure how
Damm [24]

Answer:

cc

Explanation:

4 0
3 years ago
What yall up to yall wanna hit
gayaneshka [121]

Answer:

umm what?

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • A 60.0 kg astronaut is on a space walk away from the shuttle when her tether line breaks! She is able to throw her 10.0 kg oxyge
    13·1 answer
  • How can you determine the type of radiation an atom emits as its nucleus decays
    8·1 answer
  • The atomic number of a element if found by countingthe number of what in an atom?
    10·1 answer
  • Anytime a scientific theory is challenged does it mean that its not a good theory
    13·1 answer
  • the lenses in a students eyes have arefractive power of 52. 0 diopters when she is able to focus on the board if the distance be
    7·1 answer
  • According to the principle of conservation of momentum, A. the amount of momentum of all the objects in the universe is constant
    15·1 answer
  • What is the wavelength of a sound wave with a frequency of 50 hz? (speed of sound is 342 m/s)?
    5·1 answer
  • Turning the barrel of a 50-mm-focal-length lens on a manual-focus camera moves the lens closer to or farther from the sensor to
    5·1 answer
  • QuestIuI
    10·1 answer
  • The mass of an object is measured on Earth. The mass is 5.0kg.The object is taken to the Moon. The mass of the object is measure
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!