Answer:
The answer is B
Explanation:
Because when the both sides aren't balanced one side has to cause motion. (fall down)
Answer:
10.01 cm
Explanation:
Given that,
The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece of fat tissue was 0.13 ms.
The average propagation speed for sound in body tissue is 1540 m/s.
We need to find the depth when the reflection occur. We know that, the distance is double when transmitting and arriving. So,

or
d = 10.01 cm
So, the reflection will occur at 10.01 cm.
Answer:
The net change in the internal energy of the gas in the piston is -343J
Explanation:
Because heat and workdone are the only means of energy transfer between the system and the surrounding, change in internal energy is given by;
∆E = q + w
q = heat transfer
w = workdone
Because heat is lost by the system, the heat transfer is negative
q = -413J
Because work is done on the system, workdone is positive
w = +70J
∆E = -413J + 70J
∆E = -343J
Earth's dynamic processes allow our planet to recycle air, surface materials, and water. The correct answer is D.
Every element is able to be recognized individually in many different ways. A very easy and common way is using light absorption also known as spectroscopy. Every atom has electrons, and these electrons like to stay in their lowest-energy configuration. However, when photons collide with an electron it can increase it to a higher energy level.. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.