The mass on the spring is 0.86 kg
Explanation:
The period of a mass-spring system is given by the equation

where
m is the mass
k is the spring constant
In this problem, we have:
k = 88.7 N/m is the spring constant
The system makes 15 oscillations in 9.24 s: therefore, the period of the system is

Now we can re-arrange the first equation to solve for the mass:

Learn more about period:
brainly.com/question/5438962
#LearnwithBrainly
distance traveled by a uniformly accelerated bike is given as

here we know that



now we will have from above equation


so it will cover the total distance of 300 m
Answer:
Time taken to reach final velocity = 5.5 second
Explanation:
Given:
Initial velocity (Starting from rest)(u) = 0 m/s
Acceleration of ball (a) = 1 m/s²
Final velocity (v) = 5.5 m/s
Find:
Time taken to reach final velocity
Computation:
Using first equation of motion;
v = u + at
where,
v = final velocity
u = initial velocity
a = acceleration
t = time taken
5.5 = 0 + (1)(t)
5.5 = t
Time taken to reach final velocity = 5.5 second
Answer:
La fuerza que será necesaria aplicar a un cuerpo de 20kg de masa para imprimirle una aceleración a=4m/s² es 80 N.
Explanation:
La segunda ley de Newton, llamada ley fundamental o principio fundamental de la dinámica, plantea que un cuerpo se acelera si se le aplica una fuerza.
De esta manera, esta ley establece que las aceleraciones que experimenta un cuerpo son proporcionales a las fuerzas que recibe. Dicho de otra forma, la aceleración de un cuerpo es proporcional a la fuerza neta que se le aplica. Cuanto mayor es la fuerza que se le aplica a un objeto con una masa dada, mayor será su aceleración.
La segunda Ley de Newton se expresa matemáticamente como:
F = m*a
Donde:
-
F es la fuerza neta. Se expresa en Newton (N)
- m es la masa del cuerpo. Se expresa en kilogramos (Kg.).
- a es la aceleración que adquiere el cuerpo. Se expresa en metros sobre segundo al cuadrado (m/s²).
En este caso:
Reemplazando:
F= 20 kg* 4 m/s²
Resolviendo:
F= 80 N
<u><em>La fuerza que será necesaria aplicar a un cuerpo de 20kg de masa para imprimirle una aceleración a=4m/s² es 80 N.</em></u>
The correct option is A.
All waves are divided into two basic classes, which are transverse and longitudinal waves. A transverse wave is a type of wave in which the medium of propagation vibrates at angle 90 degree in relation to the direction of propagation. Radio wave is an example of a transverse wave.