Answer: Option D) covalent bonds between water molecules
In water, hydrogen bonds are best described as covalent bonds between water molecules
Explanation:
The hydrogen bonds between water molecules are covalent bonds because they are formed when oxygen attract the lone electron in hydrogen, thus resulting in the formation of a partially negative charge on the oxygen atom and a partially positive charge on two hydrogen atoms
Thus, the sharing of electrons between oxygen and hydrogen atoms is responsible for the covalent bonds between water molecules
Answer:
The mass of C2H2 in the mixture is 0.56gram using the ratio of carbon in the products contributed by the C2H2.
Explanation:
The balanced equation for the reaction is: C3H8 + 2C2H2 + 10O2 >> 7CO2 + 6H2O.
From the reaction, we know that the oxygen was in excess, this will make the Carbon sources the limiting agents in the reaction. The details of the reaction showed that the ratio of water to the carbon dioxide is 1.6:1. This also means that the expected mole of carbon dioxide will be 7/1.6, which is 3.75moles.
The individual balanced equation of reaction is:
C3H3 +5O2 >> 3CO2 + 4H2O
and 2C2H2 + 5O2 >>4CO2 + 2H2O. From this one can quickly tell that the propane is in sufficient supply as it produces 3 moles of CO2 out of the expected 3.75 moles obtained above. Leaving 0.75moles of CO2 to the ethyne.
The mass of ethyne in the mixture will therefore be: 0.75/3.75 X 2.8 = 0.56g.
Answer:
Bro, its so obvious. Its electrical conductivity.
Explanation:
As reactant concentration decreases, the forward. reaction slows. As product concentration increases, the reverse reaction becomes faster. The forward. reaction will continue to slow and the reverse reaction will continue to increase until they are the same.Then the situation will be at equilibrium.
Answer:
In order to determine unequivocally which of the peaks represent Aldrin, I would run the pure sample through the chromatography equipment.
Explanation:
Gas chromatography is a technique that separates molecules based on their volatility and interaction with both the stationary phase.
The peaks on the chromatogram show how long a substance took to leave the column. Since each different substance substance will leave the column at a different time, each peak can be attributed to a substance.
Therefore, to know which of the 6 peaks represent Aldrin, it is necessary to run the pure Aldrin in the chromatography equipment and see the time of the peak. Then you just need to compare both chromatograms and indentify Aldrin.