Answer:
C. Their properties change completely.
Explanation:
The electron configurations of the elements show a periodic variation with increasing atomic number. Consequently, there are also periodic variations in physical and chemical behavior.
When atoms interact to form a chemical bond, they combine in order to <u>achieve a more stable electron configuration.</u> As a consequence, the compounds formed exhibit completely different properties.
For example, when solid magnesium burns in air, it forms both magnesium oxide and magnesium nitride, which are gases.
Answer:
The formula defining the photon energies that would be emitted by transitions between the hydrogen energy levels are given by the equation:
ΔE = -13.6Z²[1/n₁² - 1/n₂²]eV, where (1 eV = 1.602×10-19 Joules) and n₁ = initial energy level and n₂ = final energy level.
Z = Atomic number of the atom
Answer:
1.23 j/g. °C
Explanation:
Given data:
Mass of metal = 35.0 g
Initial temperature = 21 °C
Final temperature = 52°C
Amount of heat absorbed = 320 cal (320 ×4.184 = 1338.88 j)
Specific heat capacity of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 52°C - 21 °C
ΔT = 31°C
1338.88 j= 35 g ×c× 31°C
1338.88 j= 1085 g.°C ×c
1338.88 j/1085 g.°C = c
1.23 j/g. °C = c
A neutron, I'm technically not really guessing but I'm kind of guessing because there's only 3 particles in a atom, a proton, neutron and electron, for only protons and neutrons live in the nucleus so be deduction would be neutrons.
Answer:
Group 12
Explanation:
Group 12 transition metals are diamagnetic. They behave properties that distinguish them. They naturally have twelve electrons hence their outermost shell is fully filled.
Transition metals have high densities which increases down the group. However, the increase in density of transition elements of group 12 varies with temperature at a rate that is quite different from other transition elements. Hence the differences in the value of melting points and density changes by only a very small amount as you come down group 12 compared to other groups of transition elements.