Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:
2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.
Answer: A = 1560
B = 1.6
Explanation: brainlest please
Problem One
You will use both m * c * deltaT and H = m * heat of fusion.
Givens
m = 12.4 grams
c = 0.1291
t1 = 26oC
t2 = 1204
heat of fusion (H_f) = 63.5 J/grams.
Equation
H = m * c * deltaT + m * H_f
Solution
H = 12.4 * 0.1291 * (1063 - 26) + 12.4 * 63.5
H = 1660.1 + 787.4
H = 2447.5 or 2447.47 is the exact answer. I have to leave the rounding to you. I have no idea where to round it although I suspect 2450 would be right for 3 sig digs.
Problem Two
Formula and Givens
t1 = 14.5
t2 = 50.0
E = 5680
c = 4.186
m = ??
E = m c * deltaT
Solution
5680 = m * 4.186 * (50 - 14.5)
5680 = m * 4.186 * (35.5)
5680 = m * 148.603 * m
m = 5680 / 148.603
m = 38.22 grams That isn't very much. Be very sure you are working in joules. You'd leave that many grams in the kettle after drying it thoroughly.
m = 38.2 to 3 sig digs.