V = 550 mL = 0.550 L
V = 22.4 L/mol (STP)
M(CO₂)=44.01 g/mol
n(CO₂)=v/V
m(CO₂)=n(CO₂)M(CO₂)=vM(CO₂)/V
m(CO₂)=0.550*44.01/22.4=1.08 g
It would be 20 give me bravest
Answer:
1.429 g of N₂
Explanation:
The Haber process is a reaction that combines nitrogen with hydrogen to form ammonia according to the following balanced equation:
- N₂ ₍g₎ + 3 H₂ ₍g₎ ⇆ 2NH₃ ₍g₎
One can note that 1 mol of N₂ react with H₂ to produce 2 mol of NH₃.
We cannot compare weight of a substance (in grams) to another in chemical reactions, but we can use moles, then we have to convert the weight of NH3 to moles.
no. of moles of NH₃ = (mass / molar mass) = (1.7 g / 17 g/mol) = 0.1 mol
and the actual yield is 98% , then the theoretical number of moles that would be produced are:
- percent yield = (actual yield / theoretical yield) × 100
98 = (0.1 mol / theoretical yield) × 100
theoretical no. of moles of NH₃ = (0.1 * 100) /98 = 0.102 mol
using cross multiplication
1 mol of N₂ → 2 mol of NH₃.
?? mol of N₂ → 0.102 mol of NH₃.
no of moles of N₂ = [(1 mol * 0.102 mol) / 2 mol] = 0.051 mol
Last step is to convert the moles back to grams using:
mass = (no of moles of N₂ * molar mass of N₂)
= (0.051 mol * 28 g/mol) = 1.429 g
Answer:
True
Explanation:
Tighter particle compaction means less movement between particles for other substances to move through
permeable
(of a material or membrane) allowing liquids or gases to pass through it.
The chemical formula is
composed of hydrogen and oxygen where the two atoms are bonded through hydrogen
bond type of bonding. In this pair, the oxygen is the more electronegative atom
hence the electrons are more directed to it. Because of this, this creates
electron polarity which affects the chemical property of water.
<span> </span>