The solutions vapor pressure would be lower.
Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume = 4 L
Initial temperature = 300 K
Final volume = 2 L
Final temperature = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 300 K × 2L / 4 L
T₂ = 600 L.K / 4 L
T₂ = 150 K
Answer:
3. V = 0.2673 L
4. V = 2.4314 L
5. V = 0.262 L
6. V = 2.224 L
Explanation:
3. assuming ideal gas:
∴ R = 0.082 atm.L/K.mol
∴ V1 = 225 L
∴ T1 = 175 K
∴ P1 = 150 KPa = 1.48038 atm
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(175 K))/((1.48038 atm)(225 L))
⇒ n = 0.043 mol
∴ T2 = 112 K
∴ P2 = P1 = 150 KPa = 1.48038 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(112 K)(0.043 mol))/(1.48038 atm)
⇒ V2 = 0.2673 L
4. gas is heated at a constant pressure
∴ T1 = 180 K
∴ P = 1 atm
∴ V1 = 44.8 L
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(180 K))/((1 atm)(44.8 L))
⇒ n = 0.3295 mol
∴ T2 = 90 K
⇒ V2 = RT2n/P
⇒ V2 = ((0.082 atm.L/K.mol)(90 K)(0.3295 mol))/(1 atm)
⇒ V2 = 2.4314 L
5. V1 = 200 L
∴ P1 = 50 KPa = 0.4935 atm
∴ T1 = 271 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(271 K))/((0.4935 atm)(200 L))
⇒ n = 0.2251 mol
∴ P2 = 100 Kpa = 0.9869 atm
∴ T2 = 14 K
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(14 K)(0.2251 mol))/(0.9869 atm)
⇒ V2 = 0.262 L
6.a) ∴ V1 = 24.6 L
∴ P1 = 10 atm
∴ T1 = 25°C = 298 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(298 K))/((10 atm)(24.6 L))
⇒ n = 0.0993 mol
∴ T2 = 273 K
∴ P2 = 101.3 KPa = 0.9997 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(273 K)(0.0993 mol))/(0.9997 atm)
⇒ V2 = 2.224 L
Answer:
The answer is 12,560
Explanation:
The orbital period is the time a given cosmic question takes to finish one circle around another protest and applies in space science as a rule to planets or space rocks circling the Sun, moons circling planets, exoplanets circling different stars, or double stars. Mercury, for instance, has an orbital time of 88 days while it takes Jupiter around 11.86 years. The time of the Earth's circle is generally thought to be 365 days as timetables appear.