Has markings along the cylinder/beaker that indicate the volume of liquid inside them. .
Explanation:
You have a solution that contains 36 g HCl dissolved in 64 g water
Molar mass HCl = 36.45 g/mol
Mol HCl in 36 g = 36 g / 36.45 g/mol = 0.9876 mol
Molar mass H2O = 18 g/mol
Mol H2O in 64 g = 64 g / 18 g/mol = 3.5556 mol
Total mol = 0.9875 + 3.5556 = 4.5431 mol
Mol fraction HCl = 0.9876 mol / 4.5431 mol = 0.2174
Mol fraction H2O = 3.5556 / 4.5431 = 0.7826
The answer should have 2 significant digits:
Mol fraction HCl = 0.22
Mol fraction H2O = 0.78
Mol fraction has no units.
THAT IS HELPFUL FOR YOU
PLEASE MARK ME AS A BRAINLIST
Answer:
6.35 centimeters
Explanation:
<em>2.5 inches</em> = <em>6.35 centimeters</em>
Formula:
- <em>multiply </em><em>the value in </em><em>inche</em><em>s by the </em><em>conversion</em><em> factor '</em><em>2.54'.</em>
So, 2.5 inches = 2.5 × 2.54 = 6.35 centimeters.
<u>Answer:</u> The half life of the sample of silver-112 is 3.303 hours.
<u>Explanation:</u>
All radioactive decay processes undergoes first order reaction.
To calculate the rate constant for first order reaction, we use the integrated rate law equation for first order, which is:
![k=\frac{2.303}{t}\log \frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%20%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken = 1.52 hrs
= Initial concentration of reactant = 100 g
[A] = Concentration of reactant left after time 't' = [100 - 27.3] = 72.7 g
Putting values in above equation, we get:

To calculate the half life period of first order reaction, we use the equation:

where,
= half life period of first order reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the sample of silver-112 is 3.303 hours.
Answer:
Explanation:
The acid level has changed