I searched it up on Google and I got 473.176 Hope this helps.
Answer:
995.313KW
Explanation:
the explanation is in the picture
please like and Mark as brainliest
Ionic compounds<span> in solution react </span>faster<span> than molecular </span>compounds<span>. This </span>is <span>because </span>Ionic compounds<span> break apart to form free </span>ions. Therefore, there are no bonds<span> to break </span>so<span> the </span><span>reaction is fast</span>
Answer:
Option C = electron
Explanation:
Electrons are responsible for the production of colored light.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
How electrons produce the colored light:
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Other process may involve,
Fluorescence:
In fluorescence the energy is absorbed by the electron having shorter wavelength and high energy usually of U.V region. The process of absorbing the light occur in a very short period of time i.e. 10 ∧-15 sec. During the fluorescence the spin of electron not changed.
The electron is then de-excited by emitting the light in visible and IR region. This process of de-excitation occur in a time period of 10∧-9 sec.
Phosphorescence:
In phosphorescence the electron also goes to the excitation to the higher level by absorbing the U.V radiations. In case of Phosphorescence the transition back to the lower energy level occur very slowly and the spin pf electron also change.
Prepare a 1% copper sulfate solution. To make this solution, weigh 1 gram of copper sulfate (CuSO4 ·5H2O), dissolve in a small amount of distilled water in a 100 ml volumetric flask and bring to volume. Label this as 1% copper sulfate solution.