They depend on nitrogen-fixing bacteria, which convert atmospheric nitrogen into a usable form.
Incomplete question. Full question reads;
Darwin developed the theory of evolution to explain why there are so many different kinds of living things. He could easily observe that offspring of any animals were slightly different from their parents and that this could allow for big changes over thousands of years. He did not know that genes caused the differences. Genes are now very important in the modern theory of evolution.
What most likely led to a change in the widely accepted theory of evolution?
Answer:
<u>new experiments involving genes and evolution </u>
<u>Explanation:</u>
Indeed, the original theory of evolution has experienced several changes in its acceptance because of its imperfect and wrong assumptions not based on generally acceptable scientific facts,
Hence, new experiments involving genes and evolution has led to a change (disagreements and few agreements) in the widely accepted theory of evolution.
<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
the plants would grow and reproduce working together forming nutrients from their dropped leaves / branches etc causing insects to come along and do the same along with animals and a keystone species to form a revolving ecosystem continuing an energy moving process
<span>0.925 grams if using hydrochloric acid in the reaction.
0.462 grams if using sulfuric acid in the reaction.
0.000 grams if using nitric acid in the reaction.
Assuming you're using HCl or a similar acid for this reaction, the equation for the reaction is:
Zn + 2 HCl ==> ZnCl2 + H2
So each mole of zinc used, produces 1 mole of hydrogen gas, or 2 moles of hydrogen atoms. So we need to look up the atomic weights of both zinc and hydrogen.
Atomic weight zinc = 65.38
Atomic weight hydrogen = 1.00794
Moles zinc = 30.0 g / 65.38 g/mol = 0.458855919 mol
Since we produce 2 moles of hydrogen atoms per mole of zinc, multiply by 2 and the atomic weight of hydrogen to get the mass of hydrogen produced. So
0.458855919 * 2 * 1.00794 = 0.92499847 grams.
Rounding to 3 significant figures gives 0.925 grams.
To show the assumption of the acid used, the balanced equation for sulfuric acid would be
Zn2 + H2SO4 ==> Zn(SO4)2 + H2
Which means that for every mole of zinc used, 1 mole of hydrogen gas is generated (half that produced via hydrochloric acid).
If nitric acid were used, the reaction is
4Zn + 10HNO3 ==> 4Zn(NO3)2 + N2O + 5H2O
Which means that NO hydrogen gas is generated.
The only justification for assuming hydrochloric acid is used is that it's a fairly common acid that's easy to obtain. But as shown above with 2 alternative acids, the amount of hydrogen gas generated is very dependent upon the exact chemical reaction occurring and asking "How many grams of hydrogen are produced if 30.0 g of zinc reacts?" is a rather silly question unless you specify EXACTLY what the reaction is.</span>