Divide mass by the volume to find density.
It is a scientific hypothesis. A scientific hypothesis must be testable, however there is a significantly more grounded necessity that a testable speculation must meet before it can truly be viewed as logical. This foundation comes essentially from crafted by the rationalist of science Karl Popper, and is called "falsifiability".
Answer:
17.04 g/mol
Explanation:
Molar Mass of NH₃
we know that
Nitrogen has 14.01 gram/mol
And Hydrogen has 1.01 gram/mol
but we have 3 Hydrogens So we multiply
1.01 by 3 i.e., 3.03
Now, add
14.01
+<u> </u><u>3</u><u>.</u><u>0</u><u>3</u>
17.04
So, The molar mass of ammonia, NH₃ is
17.04 g/mol
<u>-TheUnknown</u><u>Scientist</u>
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Answer:
a. 4,00L
b. 16,00L
c. 12,31L
Explanation:
Avogadro's law says:

a. If initial conditions are 2,30mol and 8,00L and you lose one-half of atoms, that means you have 1,15mol:

<em>V₂ = 4,00L</em>
b. If initial conditions are 2,30mol and 8,00L and you add 2,30mol, that means you have 4,60mol:

<em>V₂ = 16,00L</em>
c. 25,0g of Ne are:
25,0g × (1mol / 20,1797g) = 1,24 moles of Ne. That means you have 2,30mol - 1,24mol = 3,54mol of Ne

<em>V₂ = 12,31L</em>
I hope it helps!