Answer:
No the given statement is not necessarily true.
Explanation:
We know that the kinetic energy of a particle of mass 'm' moving with velocity 'v' is given by

Similarly the momentum is given by 
For 2 particles with masses
and moving with velocities
respectively the respective kinetic energies is given by


Similarly For 2 particles with masses
and moving with velocities
respectively the respective momenta are given by


Now since it is given that the two kinetic energies are equal thus we have

Thus we infer that the moumenta are not equal since the ratio on right of 'i' is not 1 , and can be 1 only if the velocities of the 2 particles are equal which becomes a special case and not a general case.
Complete Question
Due to blurring caused by atmospheric distortion, the best resolution that can be obtained by a normal, earth-based, visible-light telescope is about 0.3 arcsecond (there are 60 arcminutes in a degree and 60 arcseconds in an arcminute).Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light
Answer:
The diameter is
Explanation:
From the question we are told that
The best resolution is 
The wavelength is 
Generally the
1 arcminute = > 60 arcseconds
=> x arcminute => 0.3 arcsecond
So

=> 
Now
60 arcminutes => 1 degree
0.005 arcminutes = > z degrees
=> 
=> 
Converting to radian

Generally the resolution is mathematically represented as

=> 
=>
=>
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
Answer:
So the mass of the second object M will be 1.951 kg
Explanation:
We have given mass of the first object
and its velocity 
Mass of the second object
it is at rest so its velocity 
From conservation of momentum we know that
Initial momentum = final momentum
So 


M = 1.951 kg