You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4
The work-energy theorem explains the idea that the net work - the total work done by all the forces combined - done on an object is equal to the change in the kinetic energy of the object. After the net force is removed (no more work is being done) the object's total energy is altered as a result of the work that was done.
This idea is expressed in the following equation:
is the total work done
is the change in kinetic energy
is the final kinetic energy
is the initial kinetic energy
mark me as brainliest ❤️
Answer:
FG and FP
Explanation:
Gravitational Force(FG) because the box is being pulled down and a resistance force pushing up because he is pushing(FP) up on the box.
I hope this helps!
<u>Answer:</u>
In addition to average weather conditions, climatological data also describes annual variations and fluctuations of temperature, precipitation, wind speed and other variables.
<u>Explanation</u>:
A lot many observations are made all around the world regarding the weather each day. These observations and analysis are done by humans as well as automated instruments. The weather data is collected each day all year and any inaccuracies and discrepancies are checked and rectified. The results are later then presented as the climate data. There are various factors that are taken into consideration while determining the climate of a region. Apart from the factors that are already mentioned, wind speed is also one of the other variables.