Answer:
the first one would
Explanation:
air resistance and the second would be gravity or mass
if you need an explanation ask
Gravity pulls on the object in the downward direction. The normal force to the inclined plane points in a direction perpendicular to the surface of the plane. Then for the object to be at rest, the frictional force must act parallel to the inclined plane, pointing in the upward direction.
Answer:
35.2941176 cm/s
Explanation:
round it if you need too
Distance divided by time.
<h2>================</h2><h2><em>hope it helps you see the attachment for further information.... </em></h2>
<em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em><em>⛔</em>
<h3><em>mark </em><em>it </em><em>as </em><em>brainliest</em><em>.</em><em>.</em><em>.</em><em>. </em><em>✌</em><em>✌</em></h3>
Normally, when something gets colder, its electrical resistance gets smaller. This is true of component-A in the drawing ... a simple resistor.
The component labeled 'B' has a strange and unusual symbol, and it's not a simple resistor. It's a "thermistor". The word "thermal" always has something to do with heat, and "thermistor" comes from "thermal resistor. These things can be manufactured either way ... using different materials, a thermistor can be manufactured so that its resistance goes UP, or goes DOWN, or doesn'tchange when it gets colder. I'm pretty sure that's what's going on here.
When this circuit gets colder, resistance-A gets smaller, but resistance-B either gets bigger OR doesn't change. Either way, the voltage across B increases. Since the LED is connected directly across B, the current through it depends on that voltage, so the LED gets more current, and becomes brighter, when A and B both get colder.
This circuit could actually be a very useful device. If you took out the LED and put a voltmeter in its place, then the reading on the voltmeter would tell you the temperature of wherever you put the two components A and B.