Answer:
The correct solution is:
(a) 
(b) 
(c) 
(d) 
Explanation:
The given values are:
Effective duration of the flash,
ζ = 0.25 s
Average power,


Average voltage,

Now,
(a)
⇒ 
On substituting the values, we get
⇒ 
⇒ 
(b)
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
(c)
⇒ 
⇒ 
⇒ 
(d)
As we know,
⇒ 
⇒ 
⇒ 
⇒ 
Answer:
(A) 9.5 m/s
(B) 5.225 m
Explanation:
vertical height (h) = 4.7 m
horizontal distance (d) = 9.3 m
acceleration due to gravity (g) = 9.8 m/s^{2}
initial speed of the fish (u) = 0 m/s
(A) what is the pelicans initial speed ?
- lets first calculate the time it took the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.98 s
- pelicans initial speed = speed of the fish
speed of the fish = distance / time = 9.3 / 0.98 = 9.5 m/s
initial speed of the pelican = 9.5 m/s
(B) If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?
vertical height = 1.5 m
pelican's speed = 9.5 m/s
- lets also calculate the time it will take the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.55 s
distance traveled by the fish = speed x time = 9.5 x 0.55 = 5.225 m
Answer:
About 133 db.
Explanation:
Sound Intensity Level in db (SIL db) is equal to 10log (base 10) times the ratio of the sound intensity at 200 watts (I) relative to the sound intensity of the reference sound intensity (I sub 0), which by default is equal to 10⁻¹² W/m² or 0 dB.
I = 200 w / 10 m^2 = 20 w per square meter
I sub 0 = 10^-12 w per square meter
SIL = 10log ( I / I sub o) = 20 / 10^-12 = 10log ( 20^12) = 10 ( 13.3 ) = 133 db
Hope I typed this part correctly. Hard to get it in without being able to do exponents, etc. :D
Answer:
D) Vertically.
Explanation:
A free body diagram is used to represent all the forces acting in a body. forces like, the force of gravity as a result of the gravitational interaction between the object and the Earth (W), the frictional force opposite to the movement of the object (
), the normal force due to the plane and the object (N) and the force applied to start the movement in a particular direction (F).
As is show in the free body diagram of the system, W, which is the weight of the body as a consequence of the gravitational force, is at an angle
below the inclined plane. that angle between the plane and the x axis is the same that the one of the inclined plane with respect to the horizontal, Since its sides are perpendicular.
Notice how W goes always in the direction to the center of mass of Earth in a vertical path (For comparison see figure (a) and (b)).
Answer:
C1 + C2 = 30 parallel connection
C1 * C2 / (C1 + C2) = 7.2 series connection
C1 * C2 = 7.2 * (C1 + C2) = 216
C2 + 216 / C2 = 30 using first equation
C2^2 + 216 = 30 C2
C2^2 - 30 C2 + 216 = 0
C2 = 12 or 18 solving the quadratic
Then C1 = 18 or 12