1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
10

What makes the id different from the superego?

Physics
1 answer:
KATRIN_1 [288]3 years ago
3 0
The id is part of the unconscious mind, and the superego is always conscious.
You might be interested in
A sealed container holding 0.0255 L of an ideal gas at 0.981 atm and 65 ∘ C is placed into a refrigerator and cooled to 41 ∘ C w
user100 [1]

Answer:

0.911 atm

Explanation:

In this problem, there is no change in volume of the gas, since the container is sealed.

Therefore, we can apply Gay-Lussac's law, which states that:

"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"

Mathematically:

p\propto T

where

p is the gas pressure

T is the absolute temperature

For a gas undergoing a transformation, the law can be rewritten as:

\frac{p_1}{T_1}=\frac{p_2}{T_2}

where in this problem:

p_1=0.981 atm is the initial pressure of the gas

T_1=65^{\circ}+273=338 K is the initial absolute temperature of the gas

T_2=41^{\circ}+273=314 K is the final temperature of the gas

Solving for p2, we find the final pressure of the gas:

p_2=\frac{p_1 T_2}{T_1}=\frac{(0.981)(314)}{338}=0.911 atm

3 0
4 years ago
about how much more energy is released in a 6.5 richter magnitude earthquake than in one with magnitude 5.5?
OverLord2011 [107]

Answer:

For example, an earthquake of magnitude 5.5 releases about 32 times as much energy as an earthquake measuring 4.5. Another way to look at this is that it takes about 900 magnitude 4.5 earthquakes to equal the energy released in a single 6.5 earthquake.

Explanation:

8 0
2 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
"I could feel his anguish" what could be the anguish​
sergey [27]

Answer:

yeah

Explanation:

the answer is right.

3 0
3 years ago
Someone please help me will give BRAILIEST!!!!!
ratelena [41]
The speed increases, because as the angle increases (the wing slants up more steeply), the air has to go farther to get over the wing.
4 0
3 years ago
Other questions:
  • would you expect the air pressure in a valley thats below sea level to be higher or lower than the air pressure at sea level
    5·1 answer
  • According to the Big Bang theory, after the "Bang", the universe remained dark until about ___ later, when neutral atoms began f
    12·2 answers
  • I have this question where I think the answer is "directed north of east," but apparently it is not. Can someone explain: vector
    8·1 answer
  • What determines the quality of a conductor
    11·1 answer
  • Examine the weather map and locate this symbol.
    10·2 answers
  • Paul is driving his car on a sunny afternoon. Which glasses should he ideally wear while driving?
    14·1 answer
  • A force of 4 kg weight acts on a body of mass 9.8 kg calculate the acceleration
    11·2 answers
  • When you travel in an elevator (which moves linearly in space), the ___________ detect when the elevator is accelerating or dece
    6·1 answer
  • An elevator carrying a person of mass m is moving upward and slowing down. How does the magnitude f of the force exerted on the
    14·1 answer
  • Which of the zodiac constellations will be highest at midnight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!